XIA Xiaozhuo,HAN Jiarui,DONG Long,et al.Research on site selection of eco - recuperation center based on GIS and BP neural network[J].Journal of Yanbian University,2022,(03):278.
基于GIS和BP神经网络的生态疗养中心选址研究
- Title:
- Research on site selection of eco - recuperation center based on GIS and BP neural network
- 文章编号:
- 1004-4353(2022)03-0278-05
- 分类号:
- TU24
- 文献标志码:
- A
- 摘要:
- 为了科学合理地选择生态疗养中心建筑地址,提出了一种将GIS(地理信息系统)与BP神经网络技术相结合的选址方法.该方法首先选取高程、坡度、坡向、水文、交通、土壤、土地利用、人口密度、地质灾害等9个指标作为评价指标,并利用GIS技术对这9个指标进行栅格化、量化和归一化处理; 然后利用训练所得的BP神经网络模型计算出评价指标的权重值,并利用GIS的权重叠加方法最终确定生态疗养中心位置.研究结果显示,利用BP神经网络方法选取合理的学习速率与动量值可以有效地计算出评价因子的权重大小,进而可合理地选取生态疗养中心的建设位置.该方法对其他建筑或场所的选址也具有良好的参考价值.
- Abstract:
- In order to choose the location of eco - recuperation center scientifically and rationally, a site selection method combining GIS and BP neural network technology was proposed.Firstly, nine indexes, including elevation, slope, aspect, river, road, soil, land use, population density and geological hazard, were selected as evaluation indexes, and the nine indexes were rasterized, quantified and normalized by GIS technology.Then the BP neural network model was used to calculate the weight value of the evaluation index, and the weight superposition method of GIS was used to determine the site selection of eco - recuperation center.The results show that BP neural network method can effectively calculate the weight of evaluation factors by selecting a reasonable learning rate and momentum value, and then rationally select the construction location of eco - recuperation center.This method also has good reference value for other buildings or sites.
参考文献/References:
[1] 杜慧.基于建筑环保理念下我国绿色生态建筑的发展趋势[J].戏剧之家,2018(1):177 - 178.
[2] 敬星.基于绿色生态建筑评价标准的建筑设计策略分析[J].中国标准化,2018(2):71 - 73.
[3] 王成.基于GIS和AHP法的乡村避暑地选址研究:以童庆市南川区为例[D].重庆:西南大学,2014:16 - 17.
[4] 王宪恩,丁炎军,王硕.基于ANP - GIS的长春市城市建设用地生态适宜性评价[J].水土保持研究,2018,25(3):222 - 236.
[5] 刘海芹.基于GIS与人工神经网络的经济型酒店选址研究:以徐州国家高新技术产业开发区为例[D].北京:中国矿业大学,2017.
[6] 汤国安,刘学军,闾国年,等.地理信息系统教程[M].北京:高等教育出版社,2010:213 - 214.
[7] 葛永.交通系统可达性变化对居住选址的影响研究[D].西安:长安大学,2017:25 - 26.
[8] 房金鹏.延边州泥石流灾害生态风险评价[D].延吉:延边大学,2020.
[9] 罗东.基于IBA - BP神经网络的物流中心选址研究[J].河南科学,2021,39(9):1396 - 1404.
[10] 刘倩,高轩能.考虑自然灾害等多因素的BWM - GIS城市医院选址[J].华侨大学学报(自然科学版),2021,43(3):83 - 90.
相似文献/References:
[1]黄宏运,吴礼斌*,李诗争,等.一种改进的IPSO-BP神经网络在股指预测中的应用 ——以上证综指为例[J].延边大学学报(自然科学版),2016,42(04):351.
HUANG Hongyun,WU Libing*,LI Shizheng,et al.An improved IPSO-BP neural network in stock market index forecasting — A case study of Shanghai Composite Index[J].Journal of Yanbian University,2016,42(03):351.
[2]张鹏,崔荣一*.基于基本图像特征的中朝文种辨识方法[J].延边大学学报(自然科学版),2017,43(02):173.
ZHANG Peng,CUI Rongyi*.Chinese and Korean script identification based on basic image features[J].Journal of Yanbian University,2017,43(03):173.
[3]俞颖,黄风华,刘永芬.基于特征降维及参数优化的语音情感识别[J].延边大学学报(自然科学版),2020,46(01):49.
YU Ying,HUANG Fenghua,LIU Yongfen.Speech emotion recognition based on feature dimension reduction and parameter optimization[J].Journal of Yanbian University,2020,46(03):49.
备注/Memo
收稿日期: 2022-02-24
基金项目: 国家自然科学基金(42067065)
第一作者: 夏晓琢(2003—),女,本科生,研究方向为地理科学.
通信作者: 权赫春(1979—),男,博士,副教授,研究方向为GIS与RS应用.