[1]李小龙.Banach空间中分数阶微分方程Robin边值问题解的存在性[J].延边大学学报(自然科学版),2022,(02):95-99.
 LI Xiaolong.Existence of solutions for Robin boundary value problems of fractional differential equation in Banach spaces[J].Journal of Yanbian University,2022,(02):95-99.
点击复制

Banach空间中分数阶微分方程Robin边值问题解的存在性

参考文献/References:

[1] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam: Elsevier Science, 2006.
[2] BAI Z B, LÜ H S.Positive solutions for boundary value problem of nonlinear fractionl differential equation[J].J Math Anal Appl, 2005,311(2):495 - 505.
[3] BAI Z B.On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Anal, 2010,72(2):916 - 924.
[4] JIANG D Q, YUAN C J.The positive properties of the Green function for Dirichlet - type boundary value problems of nonlinear fractional differential equations and its application[J].Nonlinear Anal, 2010,72(2):710 - 719.
[5] WANG Y Q, LIU L S, WU Y H.Positive solutions for a nonlocal fractional differential equation[J].Nonlinear Anal, 2011,74(11):3599 - 3605.
[6] LIN L G, LIU X P, FANG H Q.Method of upper and lower solutions for fractional differential equations[J].Electronic J Differential Equations, 2012,100:1 - 13.
[7] LAN K Q.Linear first order Riemann - Liouville fractional differential and perturbed Abel's integral equations[J].J Differential Equations, 2021,306(3):28 - 59.
[8] 李小龙,张丽丽.有序Banach空间分数阶Robin边值问题的正解[J].宁夏大学学报(自然科学版),2019,40(2):111 - 115.
[9] 郭大钧,孙经先.抽象空间常微分方程[M].济南:山东科学技术出版社,1989:188 - 222.
[10] HEINZ H R.On the behaviour of measure of noncompactness with respect to differentiation and integration of vector - valued functions[J].Nonlinear Anal, 1983,7(12):1351 - 1371.
[11] 李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报,2005,48(6):1103 - 1108.
[12] 李永祥,汪璇.有序Banach空间常微分方程的正周期解[J].西北师范大学学报(自然科学版),2002,38(1):1 - 5.

相似文献/References:

[1]杨潇,白俊杰,葛琦*.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(01):21.
 YANG Xiao,BAI Junjie,GE Qi*.Existence of solutions for a class of boundary value problems with hybrid fractional q-differences[J].Journal of Yanbian University,2015,41(02):21.
[2]孙明哲,侯成敏.一类带有参数的q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2015,41(02):124.
 SUN Mingzhe,HOU Chengmin.Existence of positive solutions of q -differences equations with parameter[J].Journal of Yanbian University,2015,41(02):124.
[3]范成涛,葛琦.一类带有分数阶边值条件的分数阶q-差分方程解的存在性[J].延边大学学报(自然科学版),2015,41(03):207.
 FAN Chengtao,GE Qi*.Existence of solutions for a class of fractional q-differences equation with fractional boundary value conditions[J].Journal of Yanbian University,2015,41(02):207.
[4]田野,张翼菲,葛琦*.一类混合二阶q-对称差分边值问题解的存在性[J].延边大学学报(自然科学版),2016,42(01):15.
 TIAN Ye,ZHANG Jifei,GE Qi*.Existence of solutions for a hybrid second-order q-symmetric difference boundary value problems[J].Journal of Yanbian University,2016,42(02):15.
[5]范成涛,李怀义,葛琦*.一类有序分数阶q -差分系统边值问题解的存在性[J].延边大学学报(自然科学版),2017,43(02):95.
 FAN Chengtao,LI Huaiyi,GE Qi*.Existence of solutions for boundary value problems with a coupled system of sequential fractional q -differences[J].Journal of Yanbian University,2017,43(02):95.
[6]杨昌发,侯成敏*.一类带有泛函边值条件的Caputo型分数阶q -差分系统解的存在性与唯一性[J].延边大学学报(自然科学版),2018,44(02):103.
 YANG Changfa,HOU Chengmin*.Existence and uniqueness of solutions for a class of Caputo type fractional q -difference system with functional boundary value conditions[J].Journal of Yanbian University,2018,44(02):103.
[7]黄明辉.变时滞非线性微分方程零解的渐近稳定性[J].延边大学学报(自然科学版),2019,45(01):1.
 HUANG Minghui.Asymptotic stability of the zero solution for nonlinear differentialequations with variable delays[J].Journal of Yanbian University,2019,45(02):1.
[8]甘亦苗,侯成敏*.一类Hadamard型分数阶微分方程解的存在唯一性[J].延边大学学报(自然科学版),2021,47(02):95.
 GAN Yimiao,HOU Chengmin*.The existence and uniqueness of the solutions of a class of Hadamard type fractional differential equations[J].Journal of Yanbian University,2021,47(02):95.
[9]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
 GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(02):189.

备注/Memo

收稿日期: 2022-03-17
基金项目: 甘肃省自然科学基金(21JR1RM337); 甘肃省高等学校创新基金(2021B -270,2021B -262)
作者简介: 李小龙(1976—),男,硕士,副教授,研究方向为抽象微分方程.

更新日期/Last Update: 2022-07-20