LI Xiaolong.Existence of solutions for Robin boundary value problems of fractional differential equation in Banach spaces[J].Journal of Yanbian University,2022,(02):95-99.
Banach空间中分数阶微分方程Robin边值问题解的存在性
- Title:
- Existence of solutions for Robin boundary value problems of fractional differential equation in Banach spaces
- 文章编号:
- 1004-4353(2022)02-0095-05
- Keywords:
- fractional boundary value problem; fixed point theorem; noncompactness measure; condensing mapping
- 分类号:
- O175.15
- 文献标志码:
- A
- 摘要:
- 讨论了Banach空间E中分数阶微分方程边值问题: -Dβ<sup>0+u(t)=f(t,u(t)), 0≤t≤1, u(0)=u'(1)=θ解的存在性,其中1<β≤2, Dβ<sup>0+是标准的Riemann - Liouville分数阶导数, f: [0,1]×E→E连续.通过非紧性测度的估计技巧,在非线性项f满足较弱增长条件下利用凝聚映射的不动点定理获得了该边值问题解的存在性结果.
- Abstract:
- The existence of solutions for the boundary value problem of a class of the fractional differential equation -Dβ0+u(t)=f(t,u(t)), 0≤t≤1, u(0)=u'(1)=θ in Banach spaces E is discussed, where 1<β≤2, Dβ0+ is the standard Riemann - Liouville fractional derivative, f:[0,1]×E→E is continuous.The existence of the solution of the boundary value problem is obtained by using the fixed point theorem of condensed mapping under the condition of weak growth of nonlinear terms, by using the estimation technique of noncompactness measure.
参考文献/References:
[1] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam: Elsevier Science, 2006.
[2] BAI Z B, LÜ H S.Positive solutions for boundary value problem of nonlinear fractionl differential equation[J].J Math Anal Appl, 2005,311(2):495 - 505.
[3] BAI Z B.On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Anal, 2010,72(2):916 - 924.
[4] JIANG D Q, YUAN C J.The positive properties of the Green function for Dirichlet - type boundary value problems of nonlinear fractional differential equations and its application[J].Nonlinear Anal, 2010,72(2):710 - 719.
[5] WANG Y Q, LIU L S, WU Y H.Positive solutions for a nonlocal fractional differential equation[J].Nonlinear Anal, 2011,74(11):3599 - 3605.
[6] LIN L G, LIU X P, FANG H Q.Method of upper and lower solutions for fractional differential equations[J].Electronic J Differential Equations, 2012,100:1 - 13.
[7] LAN K Q.Linear first order Riemann - Liouville fractional differential and perturbed Abel's integral equations[J].J Differential Equations, 2021,306(3):28 - 59.
[8] 李小龙,张丽丽.有序Banach空间分数阶Robin边值问题的正解[J].宁夏大学学报(自然科学版),2019,40(2):111 - 115.
[9] 郭大钧,孙经先.抽象空间常微分方程[M].济南:山东科学技术出版社,1989:188 - 222.
[10] HEINZ H R.On the behaviour of measure of noncompactness with respect to differentiation and integration of vector - valued functions[J].Nonlinear Anal, 1983,7(12):1351 - 1371.
[11] 李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报,2005,48(6):1103 - 1108.
[12] 李永祥,汪璇.有序Banach空间常微分方程的正周期解[J].西北师范大学学报(自然科学版),2002,38(1):1 - 5.
相似文献/References:
[1]杨潇,白俊杰,葛琦*.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(01):21.
YANG Xiao,BAI Junjie,GE Qi*.Existence of solutions for a class of boundary value problems with hybrid fractional q-differences[J].Journal of Yanbian University,2015,41(02):21.
[2]孙明哲,侯成敏.一类带有参数的q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2015,41(02):124.
SUN Mingzhe,HOU Chengmin.Existence of positive solutions of q -differences equations with parameter[J].Journal of Yanbian University,2015,41(02):124.
[3]范成涛,葛琦.一类带有分数阶边值条件的分数阶q-差分方程解的存在性[J].延边大学学报(自然科学版),2015,41(03):207.
FAN Chengtao,GE Qi*.Existence of solutions for a class of fractional q-differences equation with fractional boundary value conditions[J].Journal of Yanbian University,2015,41(02):207.
[4]田野,张翼菲,葛琦*.一类混合二阶q-对称差分边值问题解的存在性[J].延边大学学报(自然科学版),2016,42(01):15.
TIAN Ye,ZHANG Jifei,GE Qi*.Existence of solutions for a hybrid second-order q-symmetric difference boundary value problems[J].Journal of Yanbian University,2016,42(02):15.
[5]范成涛,李怀义,葛琦*.一类有序分数阶q -差分系统边值问题解的存在性[J].延边大学学报(自然科学版),2017,43(02):95.
FAN Chengtao,LI Huaiyi,GE Qi*.Existence of solutions for boundary value problems with a coupled system of sequential fractional q -differences[J].Journal of Yanbian University,2017,43(02):95.
[6]杨昌发,侯成敏*.一类带有泛函边值条件的Caputo型分数阶q -差分系统解的存在性与唯一性[J].延边大学学报(自然科学版),2018,44(02):103.
YANG Changfa,HOU Chengmin*.Existence and uniqueness of solutions for a class of Caputo type fractional q -difference system with functional boundary value conditions[J].Journal of Yanbian University,2018,44(02):103.
[7]黄明辉.变时滞非线性微分方程零解的渐近稳定性[J].延边大学学报(自然科学版),2019,45(01):1.
HUANG Minghui.Asymptotic stability of the zero solution for nonlinear differentialequations with variable delays[J].Journal of Yanbian University,2019,45(02):1.
[8]甘亦苗,侯成敏*.一类Hadamard型分数阶微分方程解的存在唯一性[J].延边大学学报(自然科学版),2021,47(02):95.
GAN Yimiao,HOU Chengmin*.The existence and uniqueness of the solutions of a class of Hadamard type fractional differential equations[J].Journal of Yanbian University,2021,47(02):95.
[9]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(02):189.
备注/Memo
收稿日期: 2022-03-17
基金项目: 甘肃省自然科学基金(21JR1RM337); 甘肃省高等学校创新基金(2021B -270,2021B -262)
作者简介: 李小龙(1976—),男,硕士,副教授,研究方向为抽象微分方程.