|本期目录/Table of Contents|

[1]范成涛,李怀义,葛琦*.一类有序分数阶q -差分系统边值问题解的存在性[J].延边大学学报(自然科学版),2017,(02):95-103.
 FAN Chengtao,LI Huaiyi,GE Qi*.Existence of solutions for boundary value problems with a coupled system of sequential fractional q -differences[J].Journal of Yanbian University,2017,(02):95-103.
点击复制

一类有序分数阶q -差分系统边值问题解的存在性()
分享到:

《延边大学学报(自然科学版)》[ISSN:1004-4353/CN:22-1191/N]

卷:
期数:
2017年02期
页码:
95-103
栏目:
基础科学研究
出版日期:
2017-07-20

文章信息/Info

Title:
Existence of solutions for boundary value problems with a coupled system of sequential fractional q -differences
作者:
范成涛1 李怀义2 葛琦1*
1.延边大学理学院 数学系, 吉林 延吉 133002; 2.延吉市第一高级中学 数学组, 吉林 延吉 133000
Author(s):
FAN Chengtao1 LI Huaiyi2 GE Qi1*
1.Department of Mathematics, College of Science, Yanbian University, Yanji 133002, China; 2.Math Team, Yianji First High School, Yanji 133000, China
关键词:
有序分数阶q-差分系统 不动点定理 解的存在性
Keywords:
sequential fractional q -differences system fixed point theorem existence of solutions
分类号:
O175.6
DOI:
-
文献标志码:
A
摘要:
研究了一类有序分数阶q-差分系统解的唯一性和存在性.首先利用q-指数函数给出了该方程解的表达式,然后分别利用Leray-Schauder选择定理、Krasnoselskii不动点定理和Banach压缩映像原理证明了该系统解的存在性和唯一性.
Abstract:
We study the existence and uniqueness of solutions for a class of the sequential fractional q -differences system. Firstly, using q -exponential, a representation for the solution to this equation is given. Then the existence and uniqueness of solutions are proven by using Leray-Schauder alternative theorem, Krasnoselskii fixed point theorem and Banach contraction mapping principle.

参考文献/References:

[1] Jackson F H. On q-definite integrals, quart[J]. J Pure Appl Math, 1910,41:193-203.
[2] Al-Salam W A. Some fractionalq-integrals and q-derivatives[J]. Proc Edinb Math Soc, 1996,15(2):135-140.
[3] Agarwal R P. Certain fractional q-integrals and q-derivatives[J]. Proc Cambridge Philos Soc, 1996,66:365-370.
[4] Ernst T. q-Bernoulli and q-Euler polynomials, an umbral approach[J]. International Journal of Difference Equations, 2006,1(1):31-80.
[5] Ernst T. q-Pascal and q-Bernoulli matrices, an umbral approach[J]. Advances in Dynamical Systems and Applications, 2008,3(2):251-282.
[6] Zhao Yulin, Chen Haibo, Zhang Qiming. Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions[J]. Advances in Difference Equations, 2013,2013(48):1-15.
[7] Li Yanfeng, Yang Wengui. Monotone iterative method for nonlinear fractional q-difference equations with integral boundary conditions[J]. Advances in Difference Equations, 2015,2015(294):1-10.
[8] Suantai S, Ntouyas S K, Asawasamrit S, et al. A coupled system of fractional q-integro-difference equations with nonlocal fractional q-integral boundary conditions[J]. Advances in Difference Equations, 2015,2015(1):1-21.
[9] Ahmad B, Ntouyas S K, Tariboon J, et al. Impulsive fractional q-integro-difference equations with separated boundary conditions[J]. Applied Mathematics and Computation, 2016,281:199-213.
[10] Semary M S, Hassan H N. The homotopy analysis method for q-difference equations[J]. Ain Shams Engineering Journal, 2016,4:1-7.
[11] 葛琦,侯成敏.一类有序分数阶q-差分方程解的存在性[J].吉林大学学报(理学版),2015,53(3):377-382.

相似文献/References:

[1]杨潇,白俊杰,葛琦*.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(01):21.
 YANG Xiao,BAI Junjie,GE Qi*.Existence of solutions for a class of boundary value problems with hybrid fractional q-differences[J].Journal of Yanbian University,2015,41(02):21.
[2]孙明哲,侯成敏.一类带有参数的q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2015,41(02):124.
 SUN Mingzhe,HOU Chengmin.Existence of positive solutions of q -differences equations with parameter[J].Journal of Yanbian University,2015,41(02):124.
[3]范成涛,葛琦.一类带有分数阶边值条件的分数阶q-差分方程解的存在性[J].延边大学学报(自然科学版),2015,41(03):207.
 FAN Chengtao,GE Qi*.Existence of solutions for a class of fractional q-differences equation with fractional boundary value conditions[J].Journal of Yanbian University,2015,41(02):207.
[4]田野,张翼菲,葛琦*.一类混合二阶q-对称差分边值问题解的存在性[J].延边大学学报(自然科学版),2016,42(01):15.
 TIAN Ye,ZHANG Jifei,GE Qi*.Existence of solutions for a hybrid second-order q-symmetric difference boundary value problems[J].Journal of Yanbian University,2016,42(02):15.

备注/Memo

备注/Memo:
收稿日期: 2017-03-07 *通信作者: 葛琦(1975—),女,副教授,研究方向为微分方程理论及应用.
基金项目: 国家自然科学基金资助项目(11161049); 2015—2016年度吉林省教育厅“十二五”科技项目(吉教科合字[2015]第36号)
更新日期/Last Update: 2017-06-20