HUANG Minghui.Asymptotic stability of the zero solution for nonlinear differentialequations with variable delays[J].Journal of Yanbian University,2019,45(01):1-5.
变时滞非线性微分方程零解的渐近稳定性
- Title:
- Asymptotic stability of the zero solution for nonlinear differentialequations with variable delays
- 文章编号:
- 1004-4353(2019)01-0001-05
- Keywords:
- nonlinear; fixed point theory; asymptotic stability
- 分类号:
- O175.14
- 文献标志码:
- A
- 摘要:
- 利用Banach不动点定理研究了变时滞非线性微分方程.在一定的条件下,通过构造适当的压缩映射,得到了方程在完备度量空间Sψ上零解渐近稳定的新条件,即允许系数函数改变符号且不要求时滞有界,并通过算例证明了本文结论的有效性.
- Abstract:
- By using Banach fixed point theory, the nonlinear differential equation with variable delays is considered. Under certain conditions, by constrcutng appropriate contraction mappings, a new condition for asymptotic stability of zero solution of the equation on a complete metric space Sψ is obtained. Allowing coefficient functions to change sign and do not require the boundedness of delays are given. An example is given to illustrate the validity of the conclusion in this paper.
参考文献/References:
[1] ZHANG B. Fixed points and stability in differential equations with variable delays[J]. Nonlinear Anal, 2005,63(5):233-242.
[2] ARDJOUNI A. Fixed points and stability in linear neutral differential equations with variable delays[J]. Nonlinear Analysis, 2011(74):2062-2070.
[3] JIN C H, LUO J W. Asymptotic stability of differential equations with several delays[J]. Publ Math Debrecen, 2011,78(1):89-102.
[4] ARDJOUNI A. Fixed points and stability in nonlinear neutral volterra intergo-differential equations with variable delays[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2013,2013(28):1-13.
[5] ARDJOUNI A. Stability in totally nonlinear neutral differential equations with variable delay using fixed point[J]. Proyecciones Journal of Mathematics, 2015,34:25-44.
[6] MESMOULI M B. Periodic solutions and stability in a nonlinear neutral system of differential equations with infinite delay[J]. Boletín de la Sociedad Matemática Mexicana, 2018,24(1):239-255.
[7] 钟越.一类非线性Volterra方程零解的稳定性[J].数学物理学报,2015,35(5):878-883.
[8] GE F, KOU C. Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations[J]. Applied Mathematics & Computation, 2015,257:308-316.
[9] 姚洪兴.一类四阶时滞微分方程的渐进稳定性[J].江苏大学学报(自然科学版),2010,31(5):616-620.
[10] 黄明辉.多时滞的非线性微分方程的渐近稳定性[J].广东工业大学学报,2016,33(1):62-66.
[11] 黄明辉.带可积时滞的非线性中立型微分方程的h- 渐近稳定性[J].南阳师范学院学报,2017,38(9):5-11.
相似文献/References:
[1]杨潇,白俊杰,葛琦*.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(01):21.
YANG Xiao,BAI Junjie,GE Qi*.Existence of solutions for a class of boundary value problems with hybrid fractional q-differences[J].Journal of Yanbian University,2015,41(01):21.
[2]孙明哲,侯成敏.一类带有参数的q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2015,41(02):124.
SUN Mingzhe,HOU Chengmin.Existence of positive solutions of q -differences equations with parameter[J].Journal of Yanbian University,2015,41(01):124.
[3]范成涛,葛琦.一类带有分数阶边值条件的分数阶q-差分方程解的存在性[J].延边大学学报(自然科学版),2015,41(03):207.
FAN Chengtao,GE Qi*.Existence of solutions for a class of fractional q-differences equation with fractional boundary value conditions[J].Journal of Yanbian University,2015,41(01):207.
[4]田野,张翼菲,葛琦*.一类混合二阶q-对称差分边值问题解的存在性[J].延边大学学报(自然科学版),2016,42(01):15.
TIAN Ye,ZHANG Jifei,GE Qi*.Existence of solutions for a hybrid second-order q-symmetric difference boundary value problems[J].Journal of Yanbian University,2016,42(01):15.
[5]范成涛,李怀义,葛琦*.一类有序分数阶q -差分系统边值问题解的存在性[J].延边大学学报(自然科学版),2017,43(02):95.
FAN Chengtao,LI Huaiyi,GE Qi*.Existence of solutions for boundary value problems with a coupled system of sequential fractional q -differences[J].Journal of Yanbian University,2017,43(01):95.
[6]杨昌发,侯成敏*.一类带有泛函边值条件的Caputo型分数阶q -差分系统解的存在性与唯一性[J].延边大学学报(自然科学版),2018,44(02):103.
YANG Changfa,HOU Chengmin*.Existence and uniqueness of solutions for a class of Caputo type fractional q -difference system with functional boundary value conditions[J].Journal of Yanbian University,2018,44(01):103.
[7]甘亦苗,侯成敏*.一类Hadamard型分数阶微分方程解的存在唯一性[J].延边大学学报(自然科学版),2021,47(02):95.
GAN Yimiao,HOU Chengmin*.The existence and uniqueness of the solutions of a class of Hadamard type fractional differential equations[J].Journal of Yanbian University,2021,47(01):95.
[8]李小龙.Banach空间中分数阶微分方程Robin边值问题解的存在性[J].延边大学学报(自然科学版),2022,(02):95.
LI Xiaolong.Existence of solutions for Robin boundary value problems of fractional differential equation in Banach spaces[J].Journal of Yanbian University,2022,(01):95.
[9]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(01):189.
备注/Memo
收稿日期: 2019-02-28
基金项目: 国家自然科学基金资助项目(61773128)
作者简介: 黄明辉(1988—),男,讲师,研究方向为微分方程与动力系统.