WU Fan,HOU Chengmin*.Stability of q -symmetric fractional non-autonomous systems[J].Journal of Yanbian University,2016,42(03):188-191,230.
分数阶q -对称非自治系统的稳定性
- Title:
- Stability of q -symmetric fractional non-autonomous systems
- Keywords:
- q-symmetric fractional Caputo derivative; q-symmetric Riemann-Liouville fractional derivative; non-autonomous systems; Lyapunov’s direct method; stability
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 考虑一类分数阶q-对称非自治系统的稳定性.利用Lyapunov直接法,研究了q-对称Caputo分数阶非自治系统的稳定性,建立了该系统一致稳定性及渐近稳定性条件并给出了证明.进一步,利用q-对称Riemann-Liouville分数阶导算子与q-对称Caputo分数阶导算子的关系,给出了q-对称Riemann-Liouville分数阶非自治系统的稳定性、一致稳定性及渐近稳定性结果.
- Abstract:
- Stability of a class of q-symmetric fractional non-autonomous systems is considered. Using Lyapunov’s direct method, the stability of q-symmetric fractional non-autonomous systems with q-symmetric fractional Caputo derivative is studied. Furthermore, using the relation of q-symmetric Caputo fractional derivative and q-symmetric Riemann-Liouville fractional derivative, the results of stability, uniformly stability and asymptotic stability for q-symmetric fractional non-autonomous systems with q-symmetric Riemann-Liouville fractional derivative is obtained.
参考文献/References:
[1] Strominger A. Information in black hole radiation[J]. Phys Rev Lett, 1993,71(23):3743-3746.
[2] Youm D. q-deformed conformal quantum mechanics[J]. Phys Rev D, 2000,62(9):095009.
[3] Jackson F H. On q-definite integrals, Quart[J]. J Pure Appl Math, 1910,41:193-203.
[4] Jackson F H. q-difference equations Amer[J]. J Math, 1910,32(4):305-314.
[5] Al-Salam W A. Some fractional q-integrals and q-derivatives[J]. Proc Edinb Math Soc, 1996,15(2):135-140.
[6] Agarwal R P. Certain fractional q-integrals and q-derivatives[J]. Proc Cambridge Philos Soc, 1996,66:365-370.
[7] Neamaty A, Yadollahzadeh M, Darzi R. Existence of solution for a nonlocal boundary value problem with fractional q-derivatives[J]. Journal of Fractional Calculus and Applications, 2015,6(2):18-27.
[8] Ahmad B, Nieto J J, Alsaedi A, et al. Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions[J]. Journal of the Franklin Institute, 2014,351:2890-2909.
[9] Yang wengui. Anti-periodic boundary value problems involving nonlinear fractional q-difference equations[J]. Malaya Journal of Matematik, 2013,4(1):107-114.
[10] Ahmad B, Ntouyas S, Purnaras I. Existence results for nonlocal boundary value problems of nonlinear fractional difference equations[J]. Adv Differ Equ, 2012,140:1-15.
[11] El-Shahed M, Hassan H A. Positive solutions of q-difference equation[J]. Proc Amer Math Soc, 2010,138:1733-1738.
[12] Wang Jufang, Yu Changlong, Gao Yanping. Positive solutions for a class of singular boundary value problems with fractional q-difference equations[J]. Journal of Function Spaces, 2015(2015), Article ID 418569(8 pages). http://dx.doi.org/10.1155/2015/418569.
[13] Harjani J, Sadarangani K. Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations[J]. Nonlinear Analysis, 2010,72:1188-1197.
[14] Sun Mingzhe, Jin Yuanfeng, Hou Chengmin. Certain fractional q-symmetric integrals and q-symmetric derivatives and their aplication[J]. Adv Differ Equ, 2016(2016):222 DOI 10.1186/s13662-016-0947-7.
[15] Annaby M H, Mansour Z S. q-Fractional Calculus and Equations[M]. Springer-Verlag, Berlin Heidelberg, 2012.
[16] Ricardo Almeida, Natália Martins. Existence results for fractional q-difference equations of order with three-point boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19(6):1675-1685.
备注/Memo
收稿日期: 2016-06-03 *通信作者: 侯成敏(1963—),女,教授,研究方向为微分方程理论及应用.基金项目: 国家自然科学基金资助项目(11161049); 2015—2016年度吉林省教育厅“十二五”科技项目(吉教科合字[2015]第36号)