TIAN Ye,ZHANG Jifei,GE Qi*.Existence of solutions for a hybrid second-order q-symmetric difference boundary value problems[J].Journal of Yanbian University,2016,42(01):15-18.
一类混合二阶q-对称差分边值问题解的存在性
- Title:
- Existence of solutions for a hybrid second-order q-symmetric difference boundary value problems
- 关键词:
- 混合二阶q-对称差分; 不动点定理; 解的存在性
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 研究了一类混合二阶q-对称差分方程解的存在性.首先分析了格林函数的性质,然后在Banach代数中利用满足Lipschitz条件的不动点定理,建立了该方程解存在的充分条件,最后通过举例验证了所得结论的合理性.
- Abstract:
- We study the existence of solutions for a hybrid second-order q-symmetric difference equation. Firstly, some characteristics of the Green function were analyzed, then we obtained sufficient condition for the existence of solutions to this equation using fixed point theorems with Lipschitz condition in Banach algebra. Finally, the main result were verified by an example.
参考文献/References:
[1] Page D N. Information in black hole radiation[J]. Phys Rev Lett, 1993,71(23):3743-3746.
[2] Youm D. q-deformed conformal quantum mechanics[J]. Phys Rev D, 2000,62(9):276-284.
[3] Lavagno A, Swamy P N. q-deformed structures and nonextensive statistics: a comparative study[J]. Phys A: Statistical Mechanics and its Applications, 2002,305(1/2):310-315.
[4] Boole G. Calculus of finite differences[J]. Chelsea Publishing Company, 1950,1(5):141-145.
[5] Ernst T. The different tongues of q-calculus[J]. Proc Est Acad Sci, 2008,57(2):81-99.
[6] Lavagno A, Gervino G. Quantum mechanics in q-deformed calculus[J]. Journal of Physics: Conference Series, 2009,174(174):233-239.
[7] Brito DCAMC, Martins Natália. The q-symmetric variational calculus[J]. Computers and Mathematics with Applications, 2012,64(7):2241-2250.
[8] 徐佳宁,龚学,吴凡,等.一类二阶q-对称差分方程两点边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(3):189-195.
[9] 杨潇,白俊杰,葛琦.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(1):21-24.
相似文献/References:
[1]杨潇,白俊杰,葛琦*.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(01):21.
YANG Xiao,BAI Junjie,GE Qi*.Existence of solutions for a class of boundary value problems with hybrid fractional q-differences[J].Journal of Yanbian University,2015,41(01):21.
[2]孙明哲,侯成敏.一类带有参数的q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2015,41(02):124.
SUN Mingzhe,HOU Chengmin.Existence of positive solutions of q -differences equations with parameter[J].Journal of Yanbian University,2015,41(01):124.
[3]范成涛,葛琦.一类带有分数阶边值条件的分数阶q-差分方程解的存在性[J].延边大学学报(自然科学版),2015,41(03):207.
FAN Chengtao,GE Qi*.Existence of solutions for a class of fractional q-differences equation with fractional boundary value conditions[J].Journal of Yanbian University,2015,41(01):207.
[4]范成涛,李怀义,葛琦*.一类有序分数阶q -差分系统边值问题解的存在性[J].延边大学学报(自然科学版),2017,43(02):95.
FAN Chengtao,LI Huaiyi,GE Qi*.Existence of solutions for boundary value problems with a coupled system of sequential fractional q -differences[J].Journal of Yanbian University,2017,43(01):95.
[5]杨昌发,侯成敏*.一类带有泛函边值条件的Caputo型分数阶q -差分系统解的存在性与唯一性[J].延边大学学报(自然科学版),2018,44(02):103.
YANG Changfa,HOU Chengmin*.Existence and uniqueness of solutions for a class of Caputo type fractional q -difference system with functional boundary value conditions[J].Journal of Yanbian University,2018,44(01):103.
[6]黄明辉.变时滞非线性微分方程零解的渐近稳定性[J].延边大学学报(自然科学版),2019,45(01):1.
HUANG Minghui.Asymptotic stability of the zero solution for nonlinear differentialequations with variable delays[J].Journal of Yanbian University,2019,45(01):1.
[7]甘亦苗,侯成敏*.一类Hadamard型分数阶微分方程解的存在唯一性[J].延边大学学报(自然科学版),2021,47(02):95.
GAN Yimiao,HOU Chengmin*.The existence and uniqueness of the solutions of a class of Hadamard type fractional differential equations[J].Journal of Yanbian University,2021,47(01):95.
[8]李小龙.Banach空间中分数阶微分方程Robin边值问题解的存在性[J].延边大学学报(自然科学版),2022,(02):95.
LI Xiaolong.Existence of solutions for Robin boundary value problems of fractional differential equation in Banach spaces[J].Journal of Yanbian University,2022,(01):95.
[9]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(01):189.
备注/Memo
收稿日期: 2016-02-15 *通信作者: 葛琦(1975—),女,副教授,研究方向为微分方程理论及其应用. 基金项目: 国家自然科学基金资助项目(11161049); 吉林省教育厅“十二五”科技项目(吉教科合字[2015]第36号)