[1]田野,张翼菲,葛琦*.一类混合二阶q-对称差分边值问题解的存在性[J].延边大学学报(自然科学版),2016,42(01):15-18.
 TIAN Ye,ZHANG Jifei,GE Qi*.Existence of solutions for a hybrid second-order q-symmetric difference boundary value problems[J].Journal of Yanbian University,2016,42(01):15-18.
点击复制

一类混合二阶q-对称差分边值问题解的存在性

参考文献/References:

[1] Page D N. Information in black hole radiation[J]. Phys Rev Lett, 1993,71(23):3743-3746.
[2] Youm D. q-deformed conformal quantum mechanics[J]. Phys Rev D, 2000,62(9):276-284.
[3] Lavagno A, Swamy P N. q-deformed structures and nonextensive statistics: a comparative study[J]. Phys A: Statistical Mechanics and its Applications, 2002,305(1/2):310-315.
[4] Boole G. Calculus of finite differences[J]. Chelsea Publishing Company, 1950,1(5):141-145.
[5] Ernst T. The different tongues of q-calculus[J]. Proc Est Acad Sci, 2008,57(2):81-99.
[6] Lavagno A, Gervino G. Quantum mechanics in q-deformed calculus[J]. Journal of Physics: Conference Series, 2009,174(174):233-239.
[7] Brito DCAMC, Martins Natália. The q-symmetric variational calculus[J]. Computers and Mathematics with Applications, 2012,64(7):2241-2250.
[8] 徐佳宁,龚学,吴凡,等.一类二阶q-对称差分方程两点边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(3):189-195.
[9] 杨潇,白俊杰,葛琦.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(1):21-24.

相似文献/References:

[1]杨潇,白俊杰,葛琦*.一类混合分数阶q-差分边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(01):21.
 YANG Xiao,BAI Junjie,GE Qi*.Existence of solutions for a class of boundary value problems with hybrid fractional q-differences[J].Journal of Yanbian University,2015,41(01):21.
[2]孙明哲,侯成敏.一类带有参数的q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2015,41(02):124.
 SUN Mingzhe,HOU Chengmin.Existence of positive solutions of q -differences equations with parameter[J].Journal of Yanbian University,2015,41(01):124.
[3]范成涛,葛琦.一类带有分数阶边值条件的分数阶q-差分方程解的存在性[J].延边大学学报(自然科学版),2015,41(03):207.
 FAN Chengtao,GE Qi*.Existence of solutions for a class of fractional q-differences equation with fractional boundary value conditions[J].Journal of Yanbian University,2015,41(01):207.
[4]范成涛,李怀义,葛琦*.一类有序分数阶q -差分系统边值问题解的存在性[J].延边大学学报(自然科学版),2017,43(02):95.
 FAN Chengtao,LI Huaiyi,GE Qi*.Existence of solutions for boundary value problems with a coupled system of sequential fractional q -differences[J].Journal of Yanbian University,2017,43(01):95.
[5]杨昌发,侯成敏*.一类带有泛函边值条件的Caputo型分数阶q -差分系统解的存在性与唯一性[J].延边大学学报(自然科学版),2018,44(02):103.
 YANG Changfa,HOU Chengmin*.Existence and uniqueness of solutions for a class of Caputo type fractional q -difference system with functional boundary value conditions[J].Journal of Yanbian University,2018,44(01):103.
[6]黄明辉.变时滞非线性微分方程零解的渐近稳定性[J].延边大学学报(自然科学版),2019,45(01):1.
 HUANG Minghui.Asymptotic stability of the zero solution for nonlinear differentialequations with variable delays[J].Journal of Yanbian University,2019,45(01):1.
[7]甘亦苗,侯成敏*.一类Hadamard型分数阶微分方程解的存在唯一性[J].延边大学学报(自然科学版),2021,47(02):95.
 GAN Yimiao,HOU Chengmin*.The existence and uniqueness of the solutions of a class of Hadamard type fractional differential equations[J].Journal of Yanbian University,2021,47(01):95.
[8]李小龙.Banach空间中分数阶微分方程Robin边值问题解的存在性[J].延边大学学报(自然科学版),2022,(02):95.
 LI Xiaolong.Existence of solutions for Robin boundary value problems of fractional differential equation in Banach spaces[J].Journal of Yanbian University,2022,(01):95.
[9]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
 GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(01):189.

备注/Memo

收稿日期: 2016-02-15 *通信作者: 葛琦(1975—),女,副教授,研究方向为微分方程理论及其应用. 基金项目: 国家自然科学基金资助项目(11161049); 吉林省教育厅“十二五”科技项目(吉教科合字[2015]第36号)

更新日期/Last Update: 2016-01-20