[1]董培辉,胡海霞,杨炜泽,等.花状氧化铜/还原氧化石墨烯复合物的制备和表征及其电化学应用[J].延边大学学报(自然科学版),2016,42(03):221-226.
 DONG Peihui,HU Haixia,YANG Weize,et al.The preparation and characterization of flowerlike CuO/reduced graphene oxide nanocomposite and its electrochemical applications[J].Journal of Yanbian University,2016,42(03):221-226.
点击复制

花状氧化铜/还原氧化石墨烯复合物的制备和表征及其电化学应用

参考文献/References:

[1] Kutluay A, Aslanoglu M. An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine[J]. Analytica Chimica Acta, 2014,839:59-66.
[2] Khaskheli A R, Fischer J, Barek J, et al. Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite-polystyrene composite film modified electrode[J]. Electrochimica Acta, 2013,101:238-242.
[3] Modick H, Schütze A, P(¨overa)lmke C, et al. Rapid determination of N-acetyl-4-aminophenol(paracetamol)in urine by tandem mass spectrometry coupled with on-line clean-up by two dimensional turbulent flow/reversed phase liquid chromatography[J]. Journal of Chromatography B, 2013,925: 33-39.
[4] Moreira A B, Oliveira H P M, Atvars T D Z, et al. Direct determination of paracetamol in powdered pharmaceutical samples by fluorescence spectroscopy[J]. Analytica Chimica Acta, 2005,539(1/2):257-261.
[5] Easwaramoorthy D, Yu Y C, Huang H J. Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction[J]. Analytica Chimica Acta, 2001,439(1):95-100.
[6] Chen A C, Chatterjee S. Nanomaterials based electrochemical sensors for biomedical applications[J]. Chemical Society Reviews, 2013,42(12):5425-5438.
[7] Bui M P N, Li C A, Han K N, et al. Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles[J]. Sensors and Actuators B: Chemical, 2012,174:318-324.
[8] Tsierkezos N G, Othman S H, Ritter U. Nitrogen-doped multi-walled carbon nanotubes for paracetamol sensing[J]. Ionics, 2013,19(12):1897-1905.
[9] Yang L J, Hu Y D, Wang Q, et al. Ionic liquid-assisted electrochemical determination of pyrimethanil using reduced graphene oxide conjugated to flower-like NiCo2O4[J]. Analytica Chimica Acta, 2016,935:104-112.
[10] Li J B, Wang X J, Duan H M, et al. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites[J]. Materials Science and Engineering: C, 2016,64:391-398.
[11] Shen W Z, Wang Y M, Yan J, et al. Enhanced electrochemical performance of lithium iron(ii)phosphate modified cooperatively via chemically reduced graphene oxide and polyaniline[J]. Electrochimica Acta, 2015,173:310-315.
[12] Feng W, Wang Y M, Chen J C, et al. Reduced graphene oxide decorated with in-situ growing ZnO nanocrystals: facile synthesis and enhanced microwave absorption properties[J]. Carbon, 2016,108:52-60.
[13] Si Y C, Samulski E T. Exfoliated graphene separated by platinum nanoparticles[J]. Chemistry of Materials, 2008,20(21):6792-6797.
[14] Luo L Q, Zhu L M, Wang Z X. Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode[J]. Bioelectrochemistry, 2012,88:156-163.
[15] Zhang P, Zhang L, Zhao G C, et al. A highly sensitive nonenzymatic glucose sensor based on CuO nanowires[J]. Microchimica Acta, 2012,176(3/4):411-417.
[16] Abbas S M, Hussain S T, Ali S, et al. One-pot synthesis of a composite of monodispersed CuO nanospheres on carbon nanotubes as anode material for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2013,574:221-226.
[17] Tian L L, Liu B T. Fabrication of CuO nanosheets modified Cu electrode and its excellent electrocatalytic performance towards glucose[J]. Applied Surface Science, 2013,283:947-953.
[18] Wang B J, Luo L Q, Ding Y P, et al. Synthesis of hollow copper oxide by electrospinning and its application as a nonenzymatic hydrogen peroxide sensor[J]. Colloids and Surfaces B: Biointerfaces, 2012,97:51-56.
[19] Zhang X Z, Sun S D, Lv J, et al. Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection[J]. Journal of Materials Chemistry A, 2014,2(26):10073-10080.
[20] Alves D C B, Silva R, Voiry D, et al. Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction[J]. Materials for Renewable and Sustainable Energy, 2015,4(1):1-7.
[21] Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974,52(3):355-393.
[22] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979,101(1):19-28.
[23] Li Y C, Feng S Q, Li S X, et al. A high effect polymer-free covalent layer by layer self-assemble carboxylated MWCNTs films modified GCE for the detection of paracetamol[J]. Sensors and Actuators B: Chemical, 2014,190:999-1005.
[24] Wang X, Wang Q X, Wang Q H, et al. Highly dispersible and stable copper terephthalate metal-organic framework-graphene oxide nanocomposite for an electrochemical sensing application[J]. ACS Applied Materials & Interfaces, 2014,6(14):11573-11580.
[25] Fan Y, Liu J H, Lu H T, et al. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode[J]. Colloids and Surfaces B: Biointerfaces, 2011,85(2):289-292.

备注/Memo

收稿日期: 2016-06-20 基金项目: 福建省质量技术监督局技术基金资助项目(FJQI2013108)*通信作者: 胡世荣(1966—),男,博士,教授,研究方向为碳纳材料及有机功能材料.

更新日期/Last Update: 2016-10-20