CHEN Xiuhui,SUN Mingxia.Identification of moving load on the suspension bridge based on HKBFO optimized neural network[J].Journal of Yanbian University,2015,41(03):257-260.
基于HKBFO优化神经网络的悬索桥动载识别
- Title:
- Identification of moving load on the suspension bridge based on HKBFO optimized neural network
- Keywords:
- Hierarchical King Bacteria Foraging Optimization algorithm(HKBFO); neural network; suspension bridge; identification of moving load
- 分类号:
- TU312+.1
- 文献标志码:
- A
- 摘要:
- 为提高BP神经网络对桥梁动载识别的效果,提出了一种基于分层菌王觅食算法(HKBFO)的桥梁动载识别方法.该算法首先进行“交叉”复制操作,再类比人大代表选举过程进行分层寻优.数值模拟证明,HKBFO算法优于BFO算法,可用于桥梁动载识别.
- Abstract:
- In order to improve the effect of BP neural network on the moving load identification of bridge, a new method of moving load identification method based on the Hierarchical King Bacteria Foraging Optimization algorithm(HKBFO)is proposed. The algorithm first carried on the “cross” copy operation, and then by the analogy of the election process of the People’s Congress conducted hierarchical optimization. The numerical simulation showed that HKBFO is better than BFO, and can be used for bridge moving load identification.
参考文献/References:
[1] 田志勇,唐茂林,蒲黔辉.宁波庆丰桥静、动载试验研究[J].桥梁建设,2012,42(5):31-36.
[2] 欧耀文,周朝阳.某大跨度钢管混凝土拱桥静动载检测、病害及其加固分析[J].郑州大学学报(工学版),2013,34(5):31-37.
[3] 孔德森,陈永坡,李纯洁,等.液化场地斜直交替群桩-土-桥梁结构动力特性分析[J].山东科技大学学报(自然科学版),2014,33(5):77-82.
[4] Law S S, Chan T H T, Zeng Q H. Moving force identification: a time domain method[J]. Journal of Sound and Vibration, 1997,201:1-22.
[5] Law S S, Chan T H T, Zeng Q H. Moving force identification: a frequency and time domain analysis[J]. Journal of Dynamic Systems, Measurement and Control ASME, 1999,12:394-401.
[6] Au F T K, Jiang R J, Cheung Y K. Parameter identification of vehicles moving on continuous bridges[J]. Journal of Sound and Vibration, 2004,269(12):91-111.
[7] 陈锋,袁向荣,李明.移动载荷识别的B-样条函数逼近法[J].石家庄铁道学院学报,2003,16(1):11-14.
[8] 尤琼,史治宇.基于区间B样条小波有限元的移动荷载识别[J].工程力学,2011,28(5):35-40.
[9] 李忠献,陈锋,王波.基于BP神经网络的桥上移动荷载分阶段识别方法[J].工程力学,2008,25(9):85-92.
[10] 陈震,余玲.基于截断GSVD方法的桥梁移动荷载识别[J].振动与冲击,2014,33(10):97-100.
[11] 姜建国,周佳薇,郑迎春,等.一种双菌群细菌觅食优化算法[J].深圳大学学报(理工版),2014,31(1):43-51.
[12] Chatzis S P, Koukas S. Numerical optimization using synergetic swarms of foraging bacterial populations[J]. Expert Systems with Application, 2011,38(12):15332-15343.
[13] 梁艳春,吴春国,时小虎,等.群智能优化算法理论与应用[M].北京:科学出版社,2009:157-159.
[14] 金敏,鲁华祥.一种遗传算法与粒子群优化的多子群分层混合算法[J].控制理论与应用,2013,30(10):1231-1238.
相似文献/References:
[1]关键,何良华*.一种基于视频的手势识别算法[J].延边大学学报(自然科学版),2013,39(03):211.
GUAN Jian,HE Lianghua*.A gesture recognition algorithm based on video[J].Journal of Yanbian University,2013,39(03):211.
[2]谷志刚,孙锋利.基于粒子群脊波神经网络的飞机目标识别[J].延边大学学报(自然科学版),2014,40(04):346.
GU Zhigang,SUN Fengli.Particle swarm optimized ridgelet neural network based on plane targets recognition[J].Journal of Yanbian University,2014,40(03):346.
[3]黄朝辉,闻辉*,车艳.基于势函数聚类的改进RBF网络算法研究[J].延边大学学报(自然科学版),2020,46(02):145.
HUANG Chaohui,WEN Hui*,CHE Yan.Research on improved RBF network algorithm based onpotential function clustering[J].Journal of Yanbian University,2020,46(03):145.
[4]金丹丹,闻辉*.基于RBF -BP神经网络融合的医学数据分类研究[J].延边大学学报(自然科学版),2021,47(01):70.
JIN Dandan,WEN Hui*.Research on medical data classification based on RBF -BP neural network fusion[J].Journal of Yanbian University,2021,47(03):70.
备注/Memo
收稿日期: 2015-07-21作者简介: 陈修辉(1983—),男,讲师,研究方向为运动稳定性与控制.