[1]黄朝辉,闻辉*,车艳.基于势函数聚类的改进RBF网络算法研究[J].延边大学学报(自然科学版),2020,(2):145-149.
 HUANG Chaohui,WEN Hui*,CHE Yan.Research on improved RBF network algorithm based onpotential function clustering[J].Journal of Yanbian University,2020,(2):145-149.
点击复制

基于势函数聚类的改进RBF网络算法研究

参考文献/References:

[1] MOODY J, DARKEN C J.Fast learning in networks of locally -tuned processing[J].Neural Computation, 1989,1(2):281-294.
[2] 张爱科,符保龙,李辉.基于改进的模糊聚类RBF网络集成的文本分类方法[J].四川大学学报(自然科学版),2012,49(6):1235-1239.
[3] RAITOHARJU J, KIRANYAZ S, GABBOUJ M.Training radial basis function neural networks for classification via class -specific clustering[J].IEEE Transactions on Neural Networks and Learning Systems, 2016,27(12):2458-2471.
[4] LU Y W, SUNDARARAJAN N, SARATCHANDRAN P.A sequential learning scheme for function approximation using minimal radial basis function[J].Neural Computation, 1997,9(2):461-478.
[5] HUANG G B, SARATCHANDRAN P, SUNDA-RARAJAN N.An efficient sequential learning algorithm for growing and pruning RBF(GAP -RBF)networks[J].IEEE Transactions on Systems, Man and Cybernetics.Part B: Cybernetics, 2004,34(6):2284-2292.
[6] HUANG G B, SARATCHANDRAN P, SUNDA-RARAJAN N.A generalized growing and pruning RBF(GAP -RBF)neural network for function approximation[J].IEEE Transactions on Neural Networks, 2005,16(1):57-67.
[7] 乔俊飞,韩红桂.RBF神经网络的结构动态优化设计[J].自动化学报,2010,36(6):865-872.
[8] 韩红桂,乔俊飞,薄迎春.基于信息强度的RBF神经网络结构设计研究[J].自动化学报,2012,38(7):1083-1090.
[9] BLAKE C, MERZ C. UCI repository of machine learning databases[EB/OL].[2019-06-03].http://archive.ics.uci.edu/ml/35.
[10] HAYKIN S. Neural Networks and Learning Machines[M].Third Edition.Beijing: China Machine Press, 2009:61-63.

备注/Memo

收稿日期: 2019-12-25 *通信作者: 闻辉(1981—),男,博士,副教授,研究方向为机器学习、神经网络.
基金项目: 福建省自然科学基金资助项目(2019J01815); 福建省教育厅中青年教师教育科研项目(JT180486); 莆田市科技局项目(2018RP4004,2018ZP10)

更新日期/Last Update: 2020-08-18