YUAN Puguang,ZHANG Xiuli,YANG Xiao,et al.Unextendible maximally entangled bases and mutually unbiased bases in C 3C 8[J].Journal of Yanbian University,2014,40(03):215-219.
C 3C 8中不可拓展的最大纠缠基和互不偏基
- Title:
- Unextendible maximally entangled bases and mutually unbiased bases in C 3C 8
- 分类号:
- O413.1
- 文献标志码:
- A
- 摘要:
- 在C3C8中证明了一组不完备的十八元不可拓展的最大纠缠基,并在此基础上加入6个直积态,得到了C3C8中的一组完备的不可拓展的最大纠缠基,然后通过构造C8的一个标准正交基给出了另一组完备的不可拓展的最大纠缠基,并证明了这两组基是互不偏的.
- Abstract:
- One uncomplete unextendible maximally entangled basis in C3C8 is proved. Based on this adding six product state, one complete unextendible maximally entangled basis in C3C8 is proved. By constructing an orthonormal basis in C8, another complete unextendible maximally entangled basis is constructed, which is mutually unbiased with the first one.
参考文献/References:
[1] Bennett C H, Divincenzo D P, Mor P W, et al.Unextandible product bases and bround entanglement[J]. Phys Rev Lett, 1999,82(26):5385(4).
[2] CHEN Bin, FEI Shaoming. Unextandible maximally entangled bases and mutually unbiased bases[J]. Phys Rev A, 2013,88(3):034301(4).
[3] Bravyi S, Smolin J A. Unextandible maximally entangled bases[J]. Phys Rev A, 2011,84(4):042306(3).
[4] Wootters W K, Fields B D. Optimal state-determination by mutually unbiased measurements[J]. Ann Phys(NY), 1989,191:363-381.
[5] Adamson R B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases[J]. Phys Rev Lett, 2010,105(3):030406(4).
[6] Fernández-Pérez A, Klimov A B, Saavedra C. Quantum process reconstruction based on mutually unbiased basis[J]. Phys Rev A, 2011,83(5):052332(6).
[7] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems[J]. Phys Rev Lett, 2002,88(12):127902(4).
[8] YU I C, Lin F L, Huang C Y. Quantum secret sharing with multilevel mutually(un)biased bases[J]. Phys Rev A, 2008,78(1):012344(5).
[9] Brierley S, Weigert S. Maximal sets of mutually unbiased quantum state in dimension 6[J]. Phys Rev A, 2008,78(4):042312(8).
相似文献/References:
[1]雷丽霞,南华,张军*.内积空间中的互不偏基[J].延边大学学报(自然科学版),2015,41(01):17.
LEI Lixia,NAN Hua,ZHANG Jun*.Mutually unbiased bases in inner product space[J].Journal of Yanbian University,2015,41(03):17.
[2]李玮,林平,郑鸿楠,等.2×3量子系统中互不偏的不可扩展最大纠缠基[J].延边大学学报(自然科学版),2014,40(02):109.
LI Wei,LIN Ping,ZHENG Hongnan,et al.Mutually unbiased and unextendible maximally entangled bases in 2×3 quantum system[J].Journal of Yanbian University,2014,40(03):109.
[3]雷丽霞,王天娇,南华*.C2C6中的最大纠缠基与无偏基[J].延边大学学报(自然科学版),2014,40(04):311.
LEI Lixia,WANG Tianjiao,NAN Hua*.Maximally entangled bases and mutually unbiased bases in C2C6[J].Journal of Yanbian University,2014,40(03):311.
[4]王天娇,南华.C2C4中无偏的最大纠缠基的构造[J].延边大学学报(自然科学版),2015,41(02):132.
WANG Tianjiao,NAN Hua*.Construction of mutually unbiased maximally entangled bases in quantum system C2C4[J].Journal of Yanbian University,2015,41(03):132.
备注/Memo
收稿日期: 2014-06-18 *通信作者: 张军(1957—),男,教授,研究方向为泛函分析.基金项目: 国家自然科学基金资助项目(11361065); 吉林省自然科学基金资助项目(201215239)