LI Wei,LIN Ping,ZHENG Hongnan,et al.Mutually unbiased and unextendible maximally entangled bases in 2×3 quantum system[J].Journal of Yanbian University,2014,40(02):109-113.
2×3量子系统中互不偏的不可扩展最大纠缠基
- Title:
- Mutually unbiased and unextendible maximally entangled bases in 2×3 quantum system
- 关键词:
- 量子系统; 最大纠缠态; 不可扩展的最大纠缠基; 互不偏基
- Keywords:
- quantum system; maximally entangled states; unextendible maximally entangled basis; mutually unbiased bases
- 分类号:
- O177.3
- 文献标志码:
- A
- 摘要:
- 讨论了2×3量子系统中不可扩展的最大纠缠基和互不偏基.首先证明一组由4个彼此规范正交的最大纠缠态可以构成2×3量子系统中不可扩展的最大纠缠基; 其次通过变换C3空间的基底,构造另一组2×3量子系统中不可扩展的最大纠缠基,并证明这两组基是互不偏的; 最后,在保证互不偏的前提下,将这两组不可扩展的最大纠缠基进行完备化.
- Abstract:
- The unextendible maximally entangled basis and mutually unbiased basis in 2×3 quantum system were discussed. Firstly, 4 orthonormal maximally entangled states were proved to construct an unextendible maximally entangled basis in 2×3 quantum system; secondly, through changing the bases of space C3, another unextendible maximally entangled basis was established, which was proved to be unbiased with the first one; finally, the two unextendible maximally entangled bases were unbiasedly completed.
参考文献/References:
[1] Nielsen M A, Chuang I L. Quantum Computation and Quantum Information[M]. London: Cambridge University Press, 2000:98-106.
[2] Bennett C H, DiVincenzo D P, Fuchs C A, et al. Quantum nonlocality without entanglement[J]. Physical Review A, 1999,59:1070-1091.
[3] DiVincenzo D P, Mor T, Shor P W, et al. Unextendible product bases, uncompletable product bases and bound entanglement[J]. Communication in Math Phys, 2003,238:379-410.
[4] Bravyi S, Smolin J A. Unextendible maximally entangled bases[J]. Phys Rev A, 2011,84:042306.
[5] Chen Bin, Fei Shaoming. Unextendible maximally entangled bases and mutually unbiased bases[J]. Phys Rev A, 2013,88:034301.
[6] Wootters W K, Fields B D. Optimal state-determination by mutually unbiased measurements[J]. Ann Phys, 1989,191:363-381.
[7] Englert B G, Aharonov Y. The mean king’s problem: prime degrees of freedom[J]. Phys Lett A, 2001,1:284.
[8] Fernandez-Perez A, Klimov A B, Saavedra C. Quantum process reconstruction based on mutually unbiased basis[J]. Phys Rev A, 2011,83:052332.
[9] Adamson R B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases[J]. Phys Rev Lett, 2010,105:030406.
[10] Yu L C, Lin F, Huang C Y. Quantum secret sharing with multilevel mutually(un)biased bases[J]. Phys Rev A, 2008,78:012344.
[11] Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems[J]. Phys Rev Lett, 2002,88:127902.
相似文献/References:
[1]卜繁强,杨强,陶元红*.量子系统C2C3中无偏的不可扩展最大纠缠基的新构造[J].延边大学学报(自然科学版),2015,41(02):136.
BU Fanqiang,YANG Qiang,TAO Yuanhong*.New construction of mutually unbiased unextendible maximally entangled bases in quantum system C2C3[J].Journal of Yanbian University,2015,41(02):136.
[2]秦利丽,陈馨,代奇阜,等.一类两体量子系统中无偏的最大纠缠基的构造[J].延边大学学报(自然科学版),2017,43(01):7.
QIN Lili,CHEN Xin,DAI Qifu,et al.Construction of mutually unbiased maximally entangled basesin a class of bipartite quantum system[J].Journal of Yanbian University,2017,43(02):7.
[3]乔金兰,沈鑫,向朝参,等.不可扩展的最大纠缠基和无偏基[J].延边大学学报(自然科学版),2017,43(01):15.
QIAO Jinlan,SHEN Xin,XIANG Chaocan,et al.Unextendible maximally entangled bases and mutually unbiased bases[J].Journal of Yanbian University,2017,43(02):15.
备注/Memo
收稿日期: 2013-12-26 *通信作者: 陶元红(1973—),女,博士,副教授,研究方向为泛函分析及应用.基金项目: 国家自然科学基金资助项目(11361065); 吉林省自然科学基金资助项目(201215239)