[1]韩英豪,苏红,于吉霞.随机2-维纳维-斯托克斯-伯格斯方程的不变测度的存在性[J].延边大学学报(自然科学版),2013,39(03):161-166.
 HAN Yinghao,SU Hong,YU Jixia.The existence of the invariant measures for 2D stochastic Navier-Stokes-Burgers equation[J].Journal of Yanbian University,2013,39(03):161-166.
点击复制

随机2-维纳维-斯托克斯-伯格斯方程的不变测度的存在性

参考文献/References:

[1] Prato G Da, Gatarek D. Stochastic Burgers equation with correlated noise[J]. Stochastics Stoch Rep, 1995,52:29-41.
[2] Flandoli F, Gatarek D. Dissipativity and invariant measures for stochastic Navier-Stokes equations[J]. Probability Theory and Related Fields, 1995,102(3):367-391.
[3] Crauel H, Flandol F. Attractors for random dynamical systems[J]. Probab Theory Relat Fields, 1994,100(3):365-393.
[4] Choi H, Temam R, Moin P, et al. Feedback control for unsteady flow and its application to Burgers equation[J]. J Fluid Mechanics, 1993,253:509-543.
[5] Hosokawa I, Yamamoto K. Turbolence in the randomly forced one dimensional Burgers flow[J]. J Stat Phys, 1975,13(3):245-272.
[6] Chambers D H, Adrian R J, Moin P, et al. Karhunen-Loéve expansion of Burgers’ model of turbulence[J]. Phys Fluids, 1988,31(9):2573-2582.
[7] Jeng Dah Teng. Forced model equation for turbulence[J]. The Physics of Fluids, 1969,12(10):2006-2010.
[8] Kardar M, Parisi M, Zhang J C. Dynamical scaling of growing interfaces[J]. Phys Rev Lett, 1986,56(9):889-892.
[9] Prato Da G, Zabczyk J. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications[M]. New York: Cambridge University Press, 1992.

相似文献/References:

[1]金秋实,董美花.群作用的测度可扩性和强测度可扩性[J].延边大学学报(自然科学版),2023,(02):126.
 JIN Qiushi,DONG Meihua.Measure expansivity and strong measure expansivity for group actions[J].Journal of Yanbian University,2023,(03):126.

备注/Memo

收稿日期: 2013-07-13
作者简介: 韩英豪(1963—),男,理学博士,副教授,研究方向为无穷维动力系统.

更新日期/Last Update: 2013-06-30