|本期目录/Table of Contents|

[1]李慧,祝相宇,陶元红*.一类泛函差分方程的频率收敛解[J].延边大学学报(自然科学版),2013,39(03):157-160.
 LI Hui,ZHU Xiangyu,TAO Yuanhong*.Frequently convergent solutions of a class of functional difference equation[J].Journal of Yanbian University,2013,39(03):157-160.
点击复制

一类泛函差分方程的频率收敛解()
分享到:

《延边大学学报(自然科学版)》[ISSN:1004-4353/CN:22-1191/N]

卷:
第39卷
期数:
2013年03期
页码:
157-160
栏目:
出版日期:
2013-09-30

文章信息/Info

Title:
Frequently convergent solutions of a class of functional difference equation
文章编号:
1004-4353(2013)03-0157-04
作者:
李慧 祝相宇 陶元红*
延边大学理学院 数学系, 吉林 延吉 133002
Author(s):
LI Hui ZHU Xiangyu TAO Yuanhong*
Department of Mathematics, College of Science, Yanbian University, Yanji 133002, China
关键词:
频率测度 差分方程 频率收敛
Keywords:
frequency measure difference equation frequent convergence
分类号:
O177.3
DOI:
-
文献标志码:
A
摘要:
利用数列的频率测度的定义及其性质研究了一类差分方程解的频率收敛性.首先定义与所讨论差分方程密切相关的多项式函数,并求出此函数的不动点; 然后利用此函数在不同区间上的单调性,证明了初始值取在[0,1]区间时,差分方程的解存在两个0.5度频率极限0和1.
Abstract:
Frequently convergent solutions of a class of functional difference equation are discussed by using definitions and properties of frequency measure of real valued sequences. First of all, a polynomial function closely related to the difference equation is defined, and then its fixed points are presented. Finally, using monotone properties of this function in different interval, it is proved that if the initial values are in the interval[0,1], then the solutions of the difference equation have two frequent limits 0 and 1 of degree 0.5.

参考文献/References:

[1] TIAN Chuanjun, XIE Shengli, CHENG Suisun. Measures for oscillatory sequences[J]. Computers and Mathematics with Applications, 1998,36(10-12):149-161.
[2] 田传俊.频率测度论[M].北京:科学出版社,2010.
[3] ZHU Zhiqiang, CHENG Suisun. Frequently oscillatory solution of neutral difference equation[J]. Southeast Asian Bulletin of Mathematics, 2005,13(29):624-634
[4] TIAN Chuanjun, CHENG Suisun. Frequent convergence and applications[J]. Mathematical Analysis, 2006,23(13):653-668.
[5] TIAN Chuanjun, CHENG Suisun, Mehmet Gurdal. Necessary and sufficient conditions for frequent cauchy sequences[J]. Asian-European Journal of Mathematics, 2009,2(2):289-299.
[6] TAO Yuanhong, LI Xiudong. Frequently oscillatory solutions for nonlinear delay partial difference equations[J]. Journal of Natural Science of Heilongjiang University, 2011,27(5):591-602.
[7] 陶元红,吴冬梅.一类中立型差分方程的频率振动性[J].延边大学学报:自然科学版,2011,37(1):42-45.
[8] 陶元红,郑菊花.系数可变号的非线性偏差分方程的频密振动解[J].北华大学学报:自然科学版,2011,12(6):632-636.
[9] 吴冬梅,陶元红.带有正负系数的非线性偏差分方程的不饱和解[J].海南师范大学学报:自然科学版,2011,24(4):354-358.
[10] LIU Shutang, ZHANG Binggen. Oscillation behavior of delay partial difference equations with positive and negative coefficients[J]. Computers Math Applic, 2002,11(43):915-964.
[11] LIU Shutang, HAN Zhongyue. Osciallation of delay partial difference equations with positive and negative coefficients[J]. Southeast Asian Bulletin of Mathematics, 2003,27(1):811-824.
[12] TIAN Chuanjun. New concepts for sequences and discrete systems(I), dynamics of continuous, discrete and impulsive systems series A[J]. Mathematical Analysis, 2008,15(5):671-710.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2013-04-13
*通信作者: 陶元红(1973—),女,博士,副教授,研究方向为泛函分析及其应用.
基金项目: 国家自然科学基金资助项目(11361065,11161049); 吉林省自然科学基金资助项目(201215239)
更新日期/Last Update: 2013-06-30