|本期目录/Table of Contents|

[1]梁晨.基于多样字典理论与多尺度距离度量的彩色图像检索[J].延边大学学报(自然科学版),2017,(02):167-172,178.
 LIANG Chen.The color image retrieval algorithm based on multiple dictionary theory and multi-scale distance measure[J].Journal of Yanbian University,2017,(02):167-172,178.
点击复制

基于多样字典理论与多尺度距离度量的彩色图像检索()
分享到:

《延边大学学报(自然科学版)》[ISSN:1004-4353/CN:22-1191/N]

卷:
期数:
2017年02期
页码:
167-172,178
栏目:
应用科学研究
出版日期:
2017-07-20

文章信息/Info

Title:
The color image retrieval algorithm based on multiple dictionary theory and multi-scale distance measure
作者:
梁晨
齐鲁师范学院 信息科学与工程学院, 山东 济南 250200
Author(s):
LIANG Chen
Institute of Information Science and Engineering, Qilu Normal University, Jinan 250200, China
关键词:
图像检索 多样字典理论 多尺度距离度量 色彩干扰
Keywords:
image retrieval multiple dictionary theory multiple distance measure color interference
分类号:
TP391.4
DOI:
-
文献标志码:
A
摘要:
针对在图像检索中因色彩因素导致的相关算法正确率低、稳定性差等问题,提出了一种多样字典理论与多尺度距离度量的彩色图像检索算法.首先,对输入图像进行量化,将其转换为一维字符串形式; 其次,采用多样字典统计对图像视觉模式编码,并计算编码后的图像特征值; 最后,给出多尺度距离的相似度量准则,并根据该准则对查询图像与数据库图像的特征值进行处理,寻找与其匹配的特征图像.实验结果表明:本文所提出的算法在查准率与查全率上要优于当前流行的检索方法,其对彩色图像的检索精度和稳定性也有了明显提高,因此具有较好的应用价值.
Abstract:
A new color image retrieval algorithm based on the theory of multiple dictionaries and multi-scale distance measure was proposed to improve the low accuracy and instability which are the problems caused by color factor. Firstly, quantifying the input image and converting it to a string form; secondly, encoding the image visual pattern by calculating the multi-dictionaries, and then evaluating encoded image feature value. Finally, this paper presents a similarity metric for multi-scale distance. According to the criterion, the characteristic values of the query image and the database image are processed, and then a matching image is found to complete the search task. Experimental results shows that this algorithm proposed in this paper was superior to the current popular methods in precision and recall level and the accuracy and stability of the color image retrieval has been significantly improved. Therefore, the algorithm has good application value.

参考文献/References:

[1] Avi Arampatzis, Konstantinos Zagoris. Dynamic two-stage image retrieval from large multimedia databases[J]. Information Processing and Management, 2013,49(6):274-285.
[2] 杨晓慧,姚雪彦.结合LBP和Brushlet的自适应图像检索[J].计算机工程,2013,39(2):233-236.
[3] 吴晓雨,何彦,杨磊.基于改进形状上下文特征的二值图像检索[J].光学精密工程,2015,23(1):303-310.
[4] Reddy A Hariprasad, Chandra N Subhash. Local oppugnant color space extrema patterns for content based natural and texture image retrieval[J]. International Journal of Electronics and Communications, 2015,69(1):290-298.
[5] 陈文兵,成海燕,陈允杰.一种基于轮廓特征点的图像检索方法[J].计算机工程,2012,38(12):197-200.
[6] 吕彬.基于全局直方图及其空间关系的图像检索技术[D].太原:太原理工大学,2014:23-25.
[7] 周同驰,程旭,吴镇扬.分层树结构字典编码的行为识别[J].中国图象图形学报,2014,19(7):1054-1061.
[8] Rao L Koteswara, Rao D Venkata. Local quantized extrema patterns for content-based natural and texture image retrieval[J]. Human-Centric Computing and Information Sciences, 2015,26(5):1-24.
[9] Cohen Andrew R, Vitanyi Paul M B. Normalized compression distance of multiples[J]. Physics, 2012,41(13):121-130.
[10] Costa Paulo, Barroso Jo(~overa)o, Fernandes Hugo, et al. Using Peano-Hilbert space filling curves for fast bidimensional ensemble EMD realization[J]. EURASIP Journal on Advances in Signal Processing, 2012,2012(1):113-125.
[11] Yang Peng, Xie Li, Liu Jilin. Simultaneous celestial positioning and orientation for the lunar rover[J]. Aerospace Science and Technology, 2014,34(3):45-54.
[12] Besiris D, Zigouris E. Dictionary-based color image retrieval using multiset theory[J]. Journal of Visual Communication and Image Representation, 2013,24(7):1155-1167.
[13] 谭文明,李斌,张文聪.基于中心对称局部二值模式的背景建模方法研究[J].中国科学技术大学学报,2010,40(11):1112-1117.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2017-01-05
作者简介: 梁晨(1981—),男,讲师,研究方向为图像处理.
更新日期/Last Update: 2017-06-20