|本期目录/Table of Contents|

[1]冯志新.数列组的强广义仿射线性相关性[J].延边大学学报(自然科学版),2017,(02):110-112.
 FENG Zhixin.The generalized affine linear correlation of sequence group[J].Journal of Yanbian University,2017,(02):110-112.
点击复制

数列组的强广义仿射线性相关性()
分享到:

《延边大学学报(自然科学版)》[ISSN:1004-4353/CN:22-1191/N]

卷:
期数:
2017年02期
页码:
110-112
栏目:
基础科学研究
出版日期:
2017-07-20

文章信息/Info

Title:
The generalized affine linear correlation of sequence group
作者:
冯志新
吉林师范大学 数学学院, 吉林 四平 136000
Author(s):
FENG Zhixin
College of Mathematics, Jilin Normal University, Siping 136000, China
关键词:
数列组 强广义仿射线性相关 强仿射线性相关 强广义仿射等价 强仿射等价
Keywords:
sequence group strongly generalized affine linear correlation strongly affine linear correlation strongly generalized affine equivalence strongly affine equivalence
分类号:
O151
DOI:
-
文献标志码:
A
摘要:
推广和加强了数列组的广义线性相关性、数列组之间的广义等价等概念,给出了数列组的强广义仿射线性相关、数列组之间强广义仿射线性表出和强广义仿射等价的概念.通过探讨这些概念之间的关系,得到一些判断数列组的强广义仿射线性相关性与强仿射线性相关性的充分与必要条件,同时给出了几个性质定理; 最后用一个反例,证明了强广义仿射线性表出和强仿射线性表出不具有传递性.
Abstract:
In this paper, we generalize and reinforce the concepts of the generalized linear correlation of sequence group and the generalized equivalence between sequence groups, and we also present the concepts of the strongly generalized affine equivalence and strongly affine equivalence between several sequence groups, then we discuss their relationship and obtain some judgement and property theorems. Finally, a counter example is used to illustrate whether the strongly generalized affine linear representation and the strongly affine linear representation have transitivity.

参考文献/References:

[1] 北京大学数学系.高等代数[M].北京:高等教育出版社,2013:164-167.
[2] 杨闻起.强线性相关性与弱无关性[J].宝鸡文理学院学报,2009,29(2):1-3.
[3] 香花.关于仿射线性相关性的探讨[J].数学实践与认识,2012,42(7):219-225.
[4] 香花.强仿射线性相关性与强线性相关性[J].安徽师范大学学报(自然科学版),2013,36(3):211-215.
[5] 杨建华.数列组的广义线性相关性[J].武汉工程大学学报,2009,31(12):79-81.
[6] Jirí Spurny. Baire classes of Banach spaces and strongly affine functions[J]. Transactions of the American Mathematical Society, 2009,362(3):1659-1680.
[7] WANG Ting, ZHANG Shiqiang. Study on linear correlation coefficient and nonlinear correlation coefficient in mathematical statistics[J]. Studies in Mathematical Sciences, 2011,3(1):58-63.
[8] Stahlecker P, Knautz H, Trenkler G. Hypothesis testing using affine linear estimators[J]. Acta Applicandae Mathematics, 1996,43(1):153-158.
[9] Galbács Gábor, Gornushkin Igor B, Winefordner James D. Generalization of a new calibration method based on linear correlation[J]. Talanta, 2008,63(2):351-357.
[10] Sinan Aydin. Using example generation to explore students’ understanding of the concepts of linear dependence/independence in linear algebra[J]. International Journal of Mathematical Education in Science and Technology, 2014,45(6):813-826.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2017-04-28 作者简介: 冯志新(1979—),女,副教授,研究方向为基础数学.
基金项目: 国家自然科学基金资助项目(71501082); 四平市科技局项目(2014064)
更新日期/Last Update: 2017-06-20