[1]朱引,刘小华.Kadomtsov - Petviashvili - Benjamin - Bona - Mahony方程的行波解[J].延边大学学报(自然科学版),2023,(03):250-256.
 ZHU Yin,LIU Xiaohua.Traveling wave solutions of the Kadomtsov - Petviashvili - Benjamin - Bona - Mahony equation[J].Journal of Yanbian University,2023,(03):250-256.
点击复制

Kadomtsov - Petviashvili - Benjamin - Bona - Mahony方程的行波解

参考文献/References:

[1] MANAFIAN J, ILHAN O A, ALIZADEH A.Periodic wave solutions and stability analysis for the KP - BBM equation with abundant novel interaction solutions [J].Physica Scripta, 2020,95(6):065203.
[2] WANG M, LI X, ZHANG J.The(G’/G)- expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Physics Letters A, 2008,372(4):417 - 423.
[3] AKBAR M A, ALI N H M, ZAYED E M E.Abundant exact traveling wave solutions of generalized bretherton equation via improved(G’/G)- expansion method[J].Communications in Theoretical Physics, 2012,57(2):173.
[4] AKBAR M A, HJ N, ALI M, et al.Some new exact traveling wave solutions to the(3+1)- dimensional Kadomtsev - Petviashvili equation[J].World Appl Sci J, 2012,16(11):1551 - 1558.
[5] SAHOO S, RAY S S.New travelling wave and anti - kink wave solutions of space - time fractional(3+1)- dimensional Jimbo - Miwa equation[J].Chinese Journal of Physics, 2020,67:79 - 85.
[6] ZAYED E M E, GEPREEL K A.The(G’/G)- expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics[J].Journal of Mathematical Physics, 2009,50(1):013502.
[7] AKBAR M A, ALI N H M.The alternative(G’/G)- expansion method and its applications to nonlinear partial differential equations[J].Int J Phys Sci, 2011,6(35):7910 - 7920.
[8] MOHYUD - DIN S T.The alternative(G’/G)- expansion method with generalized Riccati equation: application to fifth order(1+1)- dimensional Caudrey - Dodd - Gibbon equation[J].Int J Phys Sci, 2012,75:743.
[9] ALAM M N, LI X.Exact traveling wave solutions to higher order nonlinear equations[J].Journal of Ocean Engineering and Science, 2019,4(3):276 - 288.
[10] DEHGHAN M, MANAFIAN J.The solution of the variable coefficients fourth - order parabolic partial differential equations by the homotopy perturbation method[J].Zeitschrift für Naturforschung A, 2009,64(7/8):420 - 430.
[11] KUMAR S, KUMAR D, WAZWAZ A M.Group invariant solutions of(3+1)- dimensional generalized B - type Kadomstsev Petviashvili equation using optimal system of Lie subalgebra[J].Physica Scripta, 2019,94(6):065204.
[12] KUMAR S, KUMAR D, KHARBANDA H.Lie symmetry analysis, abundant exact solutions and dynamics of multisolitons to the(2+1)- dimensional KP - BBM equation[J].Pramana, 2021,95(1):33.
[13] MOHYUD - DIN S T, IRSHAD A, AHMED N, et al.Exact solutions of(3+1)- dimensional generalized KP equation arising in physics[J].Results in Physics, 2017,7:3901 - 3909.
[14] MANAFIAN J, MOHAMMADI I B, ABAPOUR M.Breather wave, periodic, and cross - kink solutions to the generalized Bogoyavlensky - Konopelchenko equation[J].Mathematical Methods in the Applied Sciences, 2020,43(4):1753 - 1774.
[15] SONG M, YANG C, ZHANG B.Exact solitary wave solutions of the Kadomtsov - Petviashvili - Benjamin - Bona - Mahony equation[J].Applied Mathematics and Computation, 2010,217(4):1334 - 1339.
[16] TARIQ K U H, SEADAWY A R.Soliton solutions of(3+1)- dimensional Kortewegde Vries Benjamin - Bona - Mahony, Kadomtsev - Petviashvili Benjamin - Bona - Mahony and modified Kortewegde Vries - Zakharov - Kuznetsov equations and their applications in water waves[J].Journal of King Saud University - Science, 2019,31(1):8 - 13.
[17] SAHA R S, SINGH S.New bright soliton solutions for Kadomtsev - Petviashvili - Benjamin - Bona - Mahony equations and bidirectional propagation of water wave surface[J].International Journal of Modern Physics C, 2022,33(5):2250069.
[18] MANAFIAN J, ILHAN O A, ALIZADEH A.Periodic wave solutions and stability analysis for the KP - BBM equation with abundant novel interaction solutions[J].Physica Scripta, 2020,95(6):065203.
[19] ALI A.Travelling waves solutions of the KP equation in weakly dispersive media[J].Open Physics, 2022,20(1):715 - 723.

备注/Memo

收稿日期: 2023-05-08
基金项目: 贵州省教育厅自然科学研究项目([2022]015号,QJJ2023012,QJJ2023061,QJJ2023062)
第一作者: 朱引(1998—),女,硕士研究生,研究方向为微分方程的定性分析.
通信作者: 刘小华(1975—),女,博士,教授,研究方向为微分方程的定性分析.

更新日期/Last Update: 2023-09-20