WANG Na.Stability analysis of a class of time - lagged fractional - order SIQ infectious disease models with segregation[J].Journal of Yanbian University,2023,(01):36-42.
一类具有隔离项的时滞分数阶SIQ传染病模型的稳定性分析
- Title:
- Stability analysis of a class of time - lagged fractional - order SIQ infectious disease models with segregation
- 文章编号:
- 1004-4353(2023)01-0036-07
- Keywords:
- segregation term; fractional order; SIQ infectious disease model; equilibrium point; stability; Hopf bifurcation
- 分类号:
- O175.2
- 文献标志码:
- A
- 摘要:
- 摘要:为了探讨引入时滞对分数阶模型稳定性的影响,建立了一类具有隔离项的时滞分数阶SIQ传染病模型.首先,计算了模型的特征矩阵和特征方程,求出了模型的基本再生数和平衡点; 其次,在无时滞和有时滞两种情况下给出了具有隔离项的分数阶SIQ传染病模型存在无病平衡点稳定的充分条件; 最后,利用分岔理论对模型出现的Hopf分岔行为进行了分析,结果表明模型的动力学特性与引入时滞的阈值大小密切相关.
- Abstract:
- In order to explore the effect of introducing time lags on the stability of the fractional - order model, we developed a kind of time - lagged fractional SIQ infectious disease models with isolation terms.Firstly, we calculated the characteristic matrix and characteristic equation of the model, and we finded the basic regenerative number and equilibrium point of the model.Secondly, we provided sufficient conditions for a stable disease - free equilibrium of the model in the cases of no time lag and with time lag.Finally, by using the bifurcation theory, we analyzed the Hopf bifurcation behavior of the model.The results showed that the dynamic properties of the model were closely related to the threshold size when introducing time lags.
参考文献/References:
[1] MOHAMED M, FAHAD A.A comparative numerical study and stability analysis for a fractional - order SIR model of childhood diseases [J].Mathematics, 2021,9(22):2847.
[2] KARAJI P T, NYAMORADI N.Analysis of a fractional SIR model with general incidence function [J].Applied Mathematics Letters, 2020,108:106499.
[3] MIAO O Y, ZHANG Y P, LIU J.Fractal control and synchronization of the discrete fractional SIRS model [J].Complexity, 2020,9(3):3085036.
[4] WANG X H, WANG Z, HUANG X, et al.Dynamic analysis of a delayed fractional - order SIR model with saturated incidence and treatment functions [J].International Journal of Bifurcation and Chaos, 2018,28(14):1850 - 1880.
[5] PODLUBNY I.Fractional differential equations [M].New York: Academic Press, 1999:198 - 202.
[6] MATIGNON D.Stability results for fractional differential equations with applications to control processing [J].Computational Engineering in Systems Applications, 1996,2:963 - 968.
[7] DENG W, LI C, LU J.Stability analysis of linear fractional differential system with multiple time delays [J].Nonlinear Dynamics, 2007,48(4):409 - 416.
[8] 杨小京.Routh - Hurwitz判别法的一个应用[J].清华大学学报(自然科学版),1996,36(2):79 - 82.
[9] 陈军杰.几个具有隔离项的传染病模型的局部稳定性和全局稳定性[J].生物数学学报,2004,19(1):57 - 64.
[10] 马知恩,周义仓,王稳地,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2004:1 - 22.
[11] 崔玉美,陈姗姗,傅新楚.几类传染病模型中基本再生数的计算[J].复杂系统与复杂性科学,2017,14(4):14 - 31.
[12] TIAN C R, LIU Y.Delay - driven Hopf bifurcation in a networked Malaria model [J].Applied Mathematics Letters, 2022,132:108092.
相似文献/References:
[1]刘一丁,王艺竹,侯成敏*.半线性分数阶差分系统的Lyapunov型不等式[J].延边大学学报(自然科学版),2017,43(04):283.
LIU Yiding,WANG Yizhu,HOU Chengmin*.Lyapunov type inequalities for quasi-linear fractional order difference systems[J].Journal of Yanbian University,2017,43(01):283.
备注/Memo
收稿日期: 2023-02-15
基金项目: 山西省高等学校科技创新项目(2020L0738); 山西省教育科学“十四五”规划课题(GH-220181)
作者简介: 王娜(1987—),女,硕士,讲师,研究方向为应用数学.