[1]郭洪壮,金小峰.基于HRCenterNet模型改进的朝鲜语古籍文字检测方法[J].延边大学学报(自然科学版),2022,(03):235-241.
 GUO Hongzhuang,JIN Xiaofeng.Korean ancient books character detection method based on improved HRCenterNet model[J].Journal of Yanbian University,2022,(03):235-241.
点击复制

基于HRCenterNet模型改进的朝鲜语古籍文字检测方法

参考文献/References:

[1] 姜哲,马少平,夏莹.大型中文古籍《四库全书》自动版面分析系统[J].中文信息学报,2000,14(2):14 - 20.
[2] KIM M, OH I.Script - Free text line segmentation using interline space model for printed document images[C]//2011 International Conference on Document Analysis and Recognition.Beijing, China: IEEE, 2011:1354 - 1358.
[3] KIM S H, JEONG S, LEE G S, et al.Word segmentation in handwritten Korean text lines based on gap clustering techniques[C]//Proceedings of Sixth International Conference on Document Analysis and Recognition.Seattle, USA: IEEE, 2001:189 - 193.
[4] WAHYONO, JO K H.A clustering strategy for touching characters in Korean and English printed text segmentation[C]//International Conference on Ubiquitous Robots and Ambient Intelligence.Daejeon: IEEE, 2012:23 - 25.
[5] 靳简明,丁晓青,彭良瑞,等.印刷维吾尔文本切割[J].中文信息学报,2005,18(5):76 - 83.
[6] YANG H, JIN L, HUANG W, et al.Dense and tight detection of Chinese characters in historical documents: datasets and a recognition guided detector[J].IEEE Access, 2018,6:30174 - 30183.
[7] XIE Z, HUANG Y, JIN L, et al.Weakly supervised precise segmentation for historical document images[J].Neurocomputing, 2019,350:271 - 281.
[8] WU S H, WANG J P, MA W H, et al.Precise detection of Chinese characters in historical documents with deep reinforcement learning[J].Pattern Recognition, 2020,107:107503.
[9] MA W, ZHANG H, JIN L, et al.Joint layout analysis, character detection and recognition for historical document digitization[C]//2020 17th International Conference on Frontiers in Handwriting Recognition(ICFHR).Dortmund, Germany: IEEE, 2020:31 - 36.
[10] TANG C W, LIU C L, CHIU P S.HRCenterNet: An anchorless approach to Chinese character segmentation in historical documents[C]//2020 IEEE International Conference on Big Data. Atlanta, GA: IEEE, 2020:1924 - 1930.
[11] 薛春寒,金小峰.基于迁移学习的少样本朝鲜语古籍文字的识别方法[J].延边大学学报(自然科学版),2021,47(4):350 - 355.
[12] LI D, HU J, WANG C, et al.Involution: Inverting the inherence of convolution for visual recognition[J].arXivpreprint, arXiv:2103.06255, 2021.
[13] WANG Q, WU B, ZHU P, et al.ECA - Net: Efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle, WA, USA: IEEE, 2020:11531 - 11539.
[14] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[J].IEEE, 2016:770 - 778.
[15] HU J, SHEN L, ALBANIE S, et al.Squeeze - and - Excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017:214 - 232.
[16] 杨海林.基于深度学习的古籍文字识别和检测[D].广州:华南理工大学,2019.

相似文献/References:

[1]刘晓童,赵梦玲,王桂荣,等.基于DeepCluster的朝鲜语古籍文字图像的无监督聚类方法研究[J].延边大学学报(自然科学版),2023,(02):183.
 LIU Xiaotong,ZHAO Mengling,WANG Guirong,et al.Research on unsupervised clustering method of Korean ancient book character images based on DeepCluster[J].Journal of Yanbian University,2023,(03):183.

备注/Memo

收稿日期: 2022-04-12
基金项目: 延边大学外国语言文学世界一流学科建设项目(18YLPY14); 国家社会科学基金重大项目(18ZDA306)
第一作者: 郭洪壮(1998—),男,硕士研究生,研究方向为计算机视觉.
通信作者: 金小峰(1970—),男,硕士,教授,研究方向为语音信息处理、计算机视觉、机器人技术.

更新日期/Last Update: 2022-11-01