WANG Feng,GE Qi.Sufficient conditions for the existence of multiple positive solutions of a class of nonlinear fractional differential equations[J].Journal of Yanbian University,2022,(03):189-195.
一类非线性分数阶微分方程多重正解存在的充分条件
- Title:
- Sufficient conditions for the existence of multiple positive solutions of a class of nonlinear fractional differential equations
- 文章编号:
- 1004-4353(2022)03-0189-07
- 关键词:
- 分数阶微分; 多重正解; 黎曼刘维尔型分数阶导数; 格林函数; Guo - Krasnosel'skii不动点定理
- Keywords:
- fractional differential; multiple positive solutions; Riemann Liouville type fractional derivative; Green's function; Guo - Krasnosel'skii fixed point theorem
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 研究了一类非线性分数阶微分方程边值问题的多重正解存在性.首先分析了方程格林函数的性质,然后利用Guo - Krasnosel'skii不动点定理得到了当系数μ(t)满足不同条件时,该边值问题至少存在1个正解和至少存在2个正解的充分条件.
- Abstract:
- Abstract: The existence of multiple positive solutions for a class of boundary value problems of nonlinear fractional differential equations is studied.Firstly, the properties of the Green's function of the equation are analyzed, and then the sufficient conditions for the existence of at least one positive solution and at least two positive solutions of the boundary value problem are obtained by using Guo - Krasnosel'skii fixed point theorem when the coefficient μ(t)satisfies different conditions.
参考文献/References:
[1] XPL A, HFA B, EAA B, et al.Application of piecewise fractional differential equation to COVID -19 infection dynamics[J].Results in Physics, 2022,2022(39):1 - 12.
[2] BASKONU H M, BULUT H.On the numerical solutions of some fractional ordinary differential equations by fractional Adams - Bashforth - Moulton method[J].Open Mathematics, 2015,13(1):547 - 556.
[3] IBRAHIM R W.Stability for univalent solutions of complex fractional differential equations[J].Proceedings of the Pakistan Academy of Sciences, 2012,49(3):227 - 232.
[4] BHRAWY A H, THARWAT M M, YILDIRIM A.A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi - term fractional differential equations[J].Applied Mathematical Modelling, 2013,37(6):4245 - 4252.
[5] ABU - ARQUB O, LEWIS R W, ZEIDAN D.Numerical solutions for the Robin time - fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm[J].International Journal of Numerical Methods for Heat and Fluid Flow, 2018,28(4):828 - 856.
[6] 吴强,黄建华.分数阶微积分[M].北京:清华大学出版社,2016:28 - 35.
[7] ZHANG S.Positive solutions for boundary - value problems of nonlinear fractional equations[J].Electron Journal of Differential Equations, 2006,2006(36):1 - 12.
[8] ZHAO Y, SUN S, HAN Z, et al.Positive solutions for boundary value problems of nonlinear fractional differential equations[J].Applied Mathematics and Computation, 2011,217(16):6950 - 6958.
[9] 甘亦苗,侯成敏.一类Hilfer型分数阶微分方程解的存在和唯一性[J].延边大学学报(自然科学版),2020,46(2):95 - 100.
相似文献/References:
[1]范成涛,葛琦*.一类带有分数阶边值条件的分数阶q-差分方程多重正解的存在性[J].延边大学学报(自然科学版),2016,42(04):289.
FAN Chengtao,GE Qi*.Existence of multiple positions solutions for a class of fractional q-differences equation with fractional boundary value conditions[J].Journal of Yanbian University,2016,42(03):289.
[2]范成涛,林爽,葛琦*.一类定义域在半轴上的分数阶q -差分系统边值问题多重正解的存在性[J].延边大学学报(自然科学版),2017,43(04):291.
FAN Chengtao,LIN Shuang,GE Qi*.Existence of multiple positions solutions for boundary value problems with a coupled system of fractional q -differences on the half-line[J].Journal of Yanbian University,2017,43(03):291.
[3]林秋彤,葛琦*.一类带有 p -Laplacian算子的分数阶 q -差分边值问题的多重正解的存在性[J].延边大学学报(自然科学版),2018,44(03):199.
LIN Qiutong,GE Qi*.Existence of multiple positive solutions for a class of boundaryvalue problems of fractional q -differences with p -Laplacian[J].Journal of Yanbian University,2018,44(03):199.
[4]于洋,葛琦.一类Caputo型分数阶微分方程边值问题多重正解存在的充分条件[J].延边大学学报(自然科学版),2023,(02):95.
YU Yang,GE Qi.Sufficient conditions for the existence of multiple positive solutions for a Caputo type fractional-order differential equation boundary value problems[J].Journal of Yanbian University,2023,(03):95.
备注/Memo
收稿日期: 2022-04-21
第一作者: 王枫(1997—),男,硕士研究生,研究方向为常微分方程理论及其应用.
通信作者: 葛琦(1975—),女,硕士,教授,研究方向为常微分方程理论及其应用.