[1]吴罗义.一类具有附加食物的Leslic - Gower捕食者-食饵模型的定性分析[J].延边大学学报(自然科学版),2022,(02):118-122,137.
 WU Luoyi.Qualitative analysis of a Leslic - Gower type predator - prey model with additional food[J].Journal of Yanbian University,2022,(02):118-122,137.
点击复制

一类具有附加食物的Leslic - Gower捕食者-食饵模型的定性分析

参考文献/References:

[1] FREEDMAN H I.Deterministic Mathematical Models in Population Ecology[M].New York: Marcel Dekker, 1980:119.
[2] LESLIE P H, GOWER J C.The properties of a stochastic model for the predator - prey type of interaction between two species[J].Biometrika, 1960,47:219 - 234.
[3] HSU S B, HUANG T W. Global stability for a class of predator - prey system[J].SIAMJ Appl Math, 1995,55:763-783.
[4] HUANG J, RUAN S, SONG J.Bifurcations in a predator - prey system of Leslie type withgeneralized Holling type III functional response[J].J Differential Equations, 2013,257:1721 - 1752.
[5] 张丽娜,李月霞.修正的Leslie - Gower捕食者 - 食饵扩散模型正平衡点的全局渐近稳定[J].应用数学,2014,27(2):381 - 386.
[6] 鲁引儿,徐菲,张丽娜.具有非线性收获的Leslie - Gower捕食者- 食饵扩散模型的Hopf分支分析[J].高校应用数学学报A辑,2019,34(1):101 - 106.
[7] BASHEER A, QUANSAH E, PARSHAD R.The effffect of additional food in Holling Tanner type models[J].Int J Dyn Control, 2019,7:1195 - 1212.
[8] PERKO L.Differential Equations and Dynamical Systems, in Texts in Applied Mathematics[M].New York: Springer - Verlag, 2001:338.

相似文献/References:

[1]吴罗义,郑航.一类具有阶段结构的时滞捕食系统的正周期解[J].延边大学学报(自然科学版),2020,46(04):289.
 WU Luoyi,ZHENG Hang.Periodic solution of delayed predator - prey model with stage – structured[J].Journal of Yanbian University,2020,46(02):289.
[2]刘英姿,李忠,何梦昕.具有恐惧效应和食饵避难所的Leslie - Gower捕食者-食饵模型的动力学分析[J].延边大学学报(自然科学版),2022,(02):112.
 LIU Yingzi,LI Zhong,HE Mengxin.Dynamics analysis of a Leslie - Gower type predator - prey model with fear effect and prey refuge[J].Journal of Yanbian University,2022,(02):112.

备注/Memo

收稿日期: 2022-04-23
基金项目: 福建省自然科学基金(2021J011148)
作者简介: 吴罗义(1978—),男,硕士,讲师,研究方向为生物数学.

更新日期/Last Update: 2022-07-20