[1]刘英姿,李忠,何梦昕.具有恐惧效应和食饵避难所的Leslie - Gower捕食者-食饵模型的动力学分析[J].延边大学学报(自然科学版),2022,(02):112-117.
 LIU Yingzi,LI Zhong,HE Mengxin.Dynamics analysis of a Leslie - Gower type predator - prey model with fear effect and prey refuge[J].Journal of Yanbian University,2022,(02):112-117.
点击复制

具有恐惧效应和食饵避难所的Leslie - Gower捕食者-食饵模型的动力学分析

参考文献/References:

[1] ZANETTE L, WHITE A F, ALLEN M C.Perceived predation risk reduces the number of offspring songbirds produce per year[J].Science, 2011,334:1398 - 1401.
[2] WANG X Y, ZANETTE L, ZOU X F.Modelling the fear effect in predator - prey interactions[J].Journal of Mathematical Biology, 2016,73(5):1179 - 1204.
[3] SASMAL S K.Population dynamics with multiple Allee effects induced by fear factors - A mathematical study on prey - predator interactions[J].Applied Mathematical Modelling, 2018,64:1 - 14.
[4] ZHANG H S, CAI Y L, FU S M, et al.Impact of the fear effect in a prey - predator model incorporating a prey refuge[J].Applied Mathematics and Computation, 2019,356:328 - 337.
[5] WANG X Q, TAN Y P, CAI Y L, et al.Impact of the fear effect on the stability and bifurcation of a Leslie - Gower predator - prey model[J].International Journal of Bifurcation and Chaos, 2020,30(14):2050210.
[6] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985:131 - 132.
[7] 马知恩,周义仓,李承治.常微分方程定性与稳定性方法[M].北京:科学出版社,2015:182 - 183.

相似文献/References:

[1]吴罗义.一类具有附加食物的Leslic - Gower捕食者-食饵模型的定性分析[J].延边大学学报(自然科学版),2022,(02):118.
 WU Luoyi.Qualitative analysis of a Leslic - Gower type predator - prey model with additional food[J].Journal of Yanbian University,2022,(02):118.
[2]王逸勤,施春玲.具有常数避难所和恐惧效应的HollingⅡ类功能性反应捕食食饵系统的定性分析[J].延边大学学报(自然科学版),2023,(02):116.
 WANG Yiqin,SHI Chunling.Qualitative analysis of a predator-prey system with Holling type Ⅱ functional response incorporating fear effct and a constant prey refuge[J].Journal of Yanbian University,2023,(02):116.
[3]王檄豪,韦煜明.一类具有恐惧效应的时滞广义Holling Ⅲ型捕食者- 食饵模型的动力学分析[J].延边大学学报(自然科学版),2023,(04):288.
 WANG Xihao,WEI Yuming.Dynamic analysis of a delayed predator - prey model with fear effect and generalized Holling type Ⅲ functional response[J].Journal of Yanbian University,2023,(02):288.

备注/Memo

收稿日期: 2022-05-22
基金项目: 福建省自然科学基金(2021J01613; 2021J011032)
第一作者: 刘英姿(1997—),女,硕士研究生,研究方向为微分方程及其应用.
通信作者: 李忠(1980—),男,博士,副教授,研究方向为微分方程及其应用.

更新日期/Last Update: 2022-07-20