[1]张宝玖,朴光日.基于POD方法的广义KdV - RLW - Rosenau方程的数值解[J].延边大学学报(自然科学版),2022,(01):13-18.
 ZHANG Baojiu,PIAO Guangri.The numerical solution of generalized KdV - RLW - Rosenau equations based on POD method[J].Journal of Yanbian University,2022,(01):13-18.
点击复制

基于POD方法的广义KdV - RLW - Rosenau方程的数值解

参考文献/References:

[1] BENJAMIN T B, BONA J L, MAHONY J J.Model equations for long waves in nonlinear dispersive systems[J].Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, 1972,272(12):47 - 78.
[2] KORTEWEG D J, VRIES G D.On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[J].Philosophical Magazine, 2011,91(6):422 - 443.
[3] RASLAN K R.A computational method for the regularized long wave(RLW)equation[J].Applied Mathematics and Computation, 2005,167(2):1101 - 1118.
[4] ESEN A, KUTLUAY S.Application of a lumped Galerkin method to the regularized long wave equation[J].Applied Mathematics and Computation, 2006,174(2):833 - 845.
[5] ABDULLOEV K O, BOGOLUBSKY I L, MAKHANKOV V G.One more example of inelastic soliton interaction[J].Physics Letters A, 1976,56(6):427 - 428.
[6] SANCHEZ P, EBADI G, MOJAVER A, et al.Solitons and other solutions to perturbed Rosenau - KdV - RLW equation with power law nonlinearity[J].Acta Physica Polonica Series A, 2015,127(6):1577 - 1587.
[7] WONGSAIJAI B, POOCHINAPAN K.A three - level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau - KdV equation and the Rosenau - RLW equation[J].Applied Mathematics and Computation, 2014,245(7):289 - 304.
[8] PAN X T, WANG Y J, ZHANG L M.Numerical analysis of a pseudo - compact CN conservative scheme for the Rosenau - KdV equation coupling with the Rosenau - RLW equation[J].Boundary Value Problems, 2015,2015(1):1 - 17.
[9] PIAO G G, LEE J Y, CAI G X.Analysis and computational method based on quadratic B - spline FEM for the Rosenau - Burgers equation[J].Numerical Methods for Partial Differential Equations, 2016,32(3):877 - 895.
[10] PAN X T, ZHENG K L, ZHANG L M.Finite difference discretization of the Rosenau - RLW equation[J].Applicable Analysis, 2013,92(12):2578 - 2589.
[11] LUO Z D, ZHOU Y J, YANG X Z.A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J].Applied Numerical Mathematics, 2009,59(8):1933 - 1946.

备注/Memo

收稿日期: 2021-11-22
基金项目: 吉林省科技计划发展项目(20180101215JC)
第一作者: 张宝玖(1997—),男,硕士研究生,研究方向为数值计算.
通信作者: 朴光日(1968—),男(朝鲜族),博士,教授,研究方向为数值计算.

更新日期/Last Update: 2022-04-20