WEI Qiping,WANG Yue*.The solution to a Kirchhoff - Carrier equation with Negative Modulus[J].Journal of Yanbian University,2021,47(02):111-115.
一类负模量Kirchhoff - Carrier方程的解
- Title:
- The solution to a Kirchhoff - Carrier equation with Negative Modulus
- 文章编号:
- 1004-4353(2021)02-0111-05
- 分类号:
- O231; O177
- 文献标志码:
- A
- 摘要:
- 利用变分方法和反证法研究了一类含有非线性项的Kirchhoff - Carrier方程,证明了当0<λ<a λ1时,该方程至少存在一对非平凡解,且当λ≥a λ1时该方程不存在同号解.
- Abstract:
- In this paper, a Kirchhoff - Carrier equation with nonlinear term is considered by using the variational method and method of contradiction. We prove that there exist at least a pair of nontrivial solutions when 0<λ<a λ1, and the same -sign solution doesn't exist when λ≥a λ1.
参考文献/References:
[1] KIRHHOFF G R.Vorlesungen über Matematische Physik: Mechanik[M].Leipzig: Druck und von B G Teubner, 1876.
[2] WANG Y, SUO H M, LEI C Y. Multiple positive solutions for a nonlocal problem involving critical exponent[J]. Electronic Journal of Differential Equations, 2017,2017(275):1-11.
[3] 王跃,熊宗洪,魏其萍,等.椭圆型广义Kirchhoff问题的多重解[J].扬州大学学报(自然科学版),2020,23(5):19-22.
[4] AN Y C, SUO H M. Existence of solutions for the Neumann boundary problem of Kirchhoff type equations[J]. Journal of Spectral Theory, 2019,9(2):547-568.
[5] 钱晓涛,石志高.一类Kirchhoff型方程解的存在性和多重性[J].延边大学学报(自然科学版),2018,44(4):302-305.
[6] 王跃,索洪敏,韦维.无边界约束的一类新Kirchhoff型问题的古典解[J].数学物理学报,2020,40A(4):857-868.
[7] 王跃,叶红艳,雷俊,等.带线性项Kirchhoff型问题的无穷多古典解[J].广西师范大学学报(自然科学版),2020,38(6):37-45.
[8] WANG Y, YANG X. Infinitely many solutions for a new Kirchhoff type equation with subcritical exponent[J/OL]. Applicable Analysis.[2020-10-12].https://www.researchgate.net/publication/341786815.
[9] CARRIER G F. On the non -linear vibration problem of the elastic string[J]. Quarterly of Applied Mathematics, 1945,3(2):157-165.
[10] YAN B Q, WANG D C. The multiplicity of positive solutions for a class of nonlocal elliptic problem[J]. Journal of Mathematical Analysis and Applications, 2016,442(1):72-102.
[11] CORRÊA F. On positive solutions of nonlocal and nonvariational elliptic problems[J]. Nonlinear Analysis: Theory Methods and Applications, 2004,59(7):1147-1155.
[12] ALVES C O, COVEI D P. Existence of solution for a class of nonlocal elliptic problem via sub -supersolution method[J]. Nonlinear Analysis: Real World Applications, 2015,23:1-8.
[13] CHIPOT M, LOVAT B. Some remarks on non local elliptic and parabolic problems[J]. Nonlinear Analysis: Theory Methods and Applications, 1997,30(7):4619-4627.
[14] 陈才生,王如云.非线性Carrier方程的整体解[J].南京大学学报(数学半年刊),2001,18(2):214-220.
[15] 张迎周,陈才生.非线性Carrier方程解的能量衰减估计[J].河海大学学报(自然科学版),2002,30(5):17-20.
[16] TRUONG L X, NGOC L, LONG N T. High -order iterative schemes for a nonlinear Kirchhoff - Carrier wave equation associated with the mixed homogeneous conditions[J]. Nonlinear Analysis: Theory Methods and Applications, 2009,71(1/2):467-484.
[17] GUESMIA S. Existence results for some Kirchhoff - Carrier problems[J]. Nonlinear Analysis: Theory Methods and Applications, 2012,75(5):2904-2921.
[18] BISOGNIN E. Hyperbolic parabolic equations with nonlinearity of Kirchhoff - Carrier type[J]. Revista Matemática de la Universidad Complutense de Madrid, 1995,8(2):401-430.
[19] EVANS L C. Partial Differential Equations[M]. Providence(Rhode Island): American Mathematical Society, 2010.
[20] AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J]. Journal of Functional Analysis, 1973,14(4):349-381.
备注/Memo
收稿日期: 2021-03-08 *通信作者: 王跃(1988—),男,在读博士,研究方向为微分方程及最优控制.
基金项目: 国家自然科学基金(11661021); 贵州省研究生科研基金(黔教合 YJSCXJH[2020]083)