[1]张杰华,王清娟.一类具有Beddington - DeAngelis功能反应的离散竞争系统的概周期解[J].延边大学学报(自然科学版),2021,47(02):105-110.
 ZHANG Jiehua,WANG Qingjuan.Almost periodic solutions of a discrete competitive system with Beddington - DeAngelis functional response[J].Journal of Yanbian University,2021,47(02):105-110.
点击复制

一类具有Beddington - DeAngelis功能反应的离散竞争系统的概周期解

参考文献/References:

[1] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. J Animal Ecodogy, 1975,44(1):331-340.
[2] DEANGELIS D L, GOLDSTEIN R A, O'NEILL R V. A model for tropic interaction[J]. Ecology, 1975,56:881-892.
[3] YU S, CHEN F. Dynamic behaviors of a competitive system with Beddington -DeAngelis functional response[J]. Discrete Dyn Nat Soc, 2019:1-12. Article ID 4592054.
[4] ZHANG J, YU S, WANG Q. Extinction and stability of a discrete competitive system with Beddington -DeAngelis functional response[J]. Engineering Letters, 2020,28(2):406-411.
[5] CHEN F, CHEN X, HUANG S. Extinction of a two species non -autonomous competitive system with Beddington- DeAngelis functional response and the effect of toxic substances[J]. Open Math, 2016,14:1157-1173.
[6] XIAO Z, LI Z, ZHU Z, et al. Hopf bifurcation and stability in a Beddington -DeAngelis predator -prey model with stage structure for predator and time delay incorporating prey refuge[J]. Open Math, 2019,17:141-159.
[7] CHEN B. Global attractivity of a Holling -Tanner model with Beddington -DeAngelis functional response: with or without prey refuge[J]. Engineering Letters, 2019,27(4):1-9.
[8] 张杰华.具时滞和反馈控制的离散互惠系统的概周期解[J].延边大学学报(自然科学版),2016,42(2):108-114.
[9] ZHANG S N. Existence of almost periodic solution for difference systems[J]. Ann Differ Equ, 2000,16(2):184-206.
[10] LI Z, CHEN F D, HE M X. Almost periodic solutions of a discrete Lotka -Volterra competition system with delays[J]. Nonlinear Anal Real World Appl, 2011,12(4):2344-2355.
[11] FINK A M, SEIFERT G. Liapunov functions and almost periodic solutions for almost periodic systems[J]. J Differential Equations, 1969,5:307-313.
[12] YUAN R, HONG J L. The existence of almost periodic solutions for a class of differential equations with piecewise constant argument[J]. Nonlinear Anal, 1997,28(8):1439-1450.
[13] CHEN F D. Permanence for the discrete mutualism model with time delays[J]. Math Comput Model, 2008,47:431-435.

备注/Memo

收稿日期: 2021-02-23基金项目: 福建省教育厅中青年教师教育科研项目(JAT190976,JAT190975)
作者简介: 张杰华(1983—),女,副教授,研究方向为生物数学.

更新日期/Last Update: 2021-07-20