YU Pengyan,HOU Chengmin*.The existence of solutions for a class of coupled systems of fractional differential inclusions with coupled boundary value problems[J].Journal of Yanbian University,2021,47(01):1-9.
一类分数阶微分包含耦合系统边值问题解的存在性
- Title:
- The existence of solutions for a class of coupled systems of fractional differential inclusions with coupled boundary value problems
- 文章编号:
- 1004-4353(2021)01-0001-09
- 关键词:
- Kakutani映射非线性选择性定理; 分数阶微分包含; 耦合系统; 边值问题
- Keywords:
- the nonlinear alternative for Kakutani maps theorem; fractional -order differential inclusions; coupled systems; boundary value problems
- 分类号:
- O175.6
- 文献标志码:
- A
- 摘要:
- 利用Kakutani映射非线性选择性定理研究了一类分数阶微分包含耦合系统边值问题解的存在性,结果表明当多值映射具有凸值时上述边值问题至少存在一个解的充分条件.
- Abstract:
- The existence of solutions for a class of coupled fractional -order differential inclusions systems supplemented with boundary value problems is investigated by using the nonlinear alternative for Kakutani maps theorem, and a sufficient condition is given for the existence of at least one solution to the above problem when the multi -valued mappings have convex values.
参考文献/References:
[1] ALSULAMI H H, NTOUYAS S K, AGARWAL R P, et al. A study of fractional -order coupled systems with a new concept of coupled non -separated boundary conditions[J]. Boundary Value Problems, 2017,2017(68):1-11.
[2] AHMAD B, NTOUYAS S K, ALSAEDI A. Coupled systems of fractional differential inclusions with coupled boundary conditions[J]. Electronic Journal of Differential Equations, 2019,2019(69):1-21.
[3] AHMAD B, NTOUYAS S K, ALSAEDI A. Fractional order differential systems involving right Caputo and left Riemann -Liouville fractional derivatives with nonlocal coupled conditions[J]. Boundary Value Problems, 2019,2019(109):1-12.
[4] DEIMLING K. Multivalued Differential Equations[M]. Berlin, New York: Walter De Gruyter, 1992:3-9.
[5] KILBAS A A, SRIVASTAVA H M, Trujillo J J. Theory and applications of fractional differential equations[M]. Amsterdam: North -Holland Mathematics Studies, 2006:69-96.
[6] 程其襄,张奠宇,胡善文,等.实变函数与泛函分析[M].4版.北京:高等教育出版社,2019:141.
[7] LOSTA A, OPIAL Z. An application of the Kakutani -Ky Fan theorem in the theory of ordinary differential equations[J]. Bull Acad Polon Sci, Sér Sci Math Astron Phys, 1965(13):781-786.
[8] GRANAS A, DUGUGUNDJI J. Fixed Point Theory[M]. New York: Springer, 2003:3-6.
备注/Memo
收稿日期: 2020-12-27
*通信作者: 侯成敏(1963—),女,教授,研究方向为微分方程及其应用.
基金项目: 吉林省教育厅“十三五”科学技术研究项目(JJKH20170454KJ)