[1]于鹏艳,侯成敏*.一类分数阶微分包含耦合系统边值问题解的存在性[J].延边大学学报(自然科学版),2021,47(01):1-9.
 YU Pengyan,HOU Chengmin*.The existence of solutions for a class of coupled systems of fractional differential inclusions with coupled boundary value problems[J].Journal of Yanbian University,2021,47(01):1-9.
点击复制

一类分数阶微分包含耦合系统边值问题解的存在性

参考文献/References:

[1] ALSULAMI H H, NTOUYAS S K, AGARWAL R P, et al. A study of fractional -order coupled systems with a new concept of coupled non -separated boundary conditions[J]. Boundary Value Problems, 2017,2017(68):1-11.
[2] AHMAD B, NTOUYAS S K, ALSAEDI A. Coupled systems of fractional differential inclusions with coupled boundary conditions[J]. Electronic Journal of Differential Equations, 2019,2019(69):1-21.
[3] AHMAD B, NTOUYAS S K, ALSAEDI A. Fractional order differential systems involving right Caputo and left Riemann -Liouville fractional derivatives with nonlocal coupled conditions[J]. Boundary Value Problems, 2019,2019(109):1-12.
[4] DEIMLING K. Multivalued Differential Equations[M]. Berlin, New York: Walter De Gruyter, 1992:3-9.
[5] KILBAS A A, SRIVASTAVA H M, Trujillo J J. Theory and applications of fractional differential equations[M]. Amsterdam: North -Holland Mathematics Studies, 2006:69-96.
[6] 程其襄,张奠宇,胡善文,等.实变函数与泛函分析[M].4版.北京:高等教育出版社,2019:141.
[7] LOSTA A, OPIAL Z. An application of the Kakutani -Ky Fan theorem in the theory of ordinary differential equations[J]. Bull Acad Polon Sci, Sér Sci Math Astron Phys, 1965(13):781-786.
[8] GRANAS A, DUGUGUNDJI J. Fixed Point Theory[M]. New York: Springer, 2003:3-6.

备注/Memo

收稿日期: 2020-12-27
*通信作者: 侯成敏(1963—),女,教授,研究方向为微分方程及其应用.
基金项目: 吉林省教育厅“十三五”科学技术研究项目(JJKH20170454KJ)

更新日期/Last Update: 2021-04-20