[1]刘晓童,赵梦玲,王桂荣,等.基于DeepCluster的朝鲜语古籍文字图像的无监督聚类方法研究[J].延边大学学报(自然科学版),2023,(02):183-188.
 LIU Xiaotong,ZHAO Mengling,WANG Guirong,et al.Research on unsupervised clustering method of Korean ancient book character images based on DeepCluster[J].Journal of Yanbian University,2023,(02):183-188.
点击复制

基于DeepCluster的朝鲜语古籍文字图像的无监督聚类方法研究

参考文献/References:

[1] 苏向东.基于深度学习和知识策略的蒙古文古籍识别研究[D].呼和浩特:内蒙古大学,2016.
[2] 姜丽.基于BIRCH 和改进k中心点算法的古籍汉字图像聚类研究[D].保定:河北大学,2012.
[3] YANG B,FU X,SIDIROPOULOS N D,et al.Towards K-means-friendly spaces:simultaneous deep learning and clustering[C]//International Conference on Machine Learning.Sydney:PMLR,2017:3861-3870.
[4] 王畅,金璟璇,金小峰.聚类与跟踪相结合的人脸数据集生成方法研究[J].延边大学学报(自然科学版),2019,45(3):221-227.
[5] YAN X,MISRA I,GUPTA A,et al.Clusterfit:Improving generalization of visual representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:ICCV,2020:6509-6518.
[6] CARON M,BOJANOWSKI P,JOULIN A,et al.Deep clustering for unsupervised learning of visual features[C]//Proceedings of the European Conference on Computer Vision.Munich:ECCV,2018:132-149.
[7] COATES A,NG A Y.Learning feature representations with K-means[J].Neural Networks:Tricks of the Trade,2012:561-580.
[8] SHARIF RAZAVIAN A,AZIZPOUR H,SULLIVAN J,et al.CNN features off-the-shelf:An astounding baseline for recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.Columbus:ICCV,2014:806-813.
[9] BOJANOWSKI P, JOULIN A.Unsupervised learning by predicting noise[C]//International Conference on Machine Learning.Sydney:PMLR,2017:517-526.
[10] WENG Y,ZHANG N,YANG X.Improved density peak clustering based on information entropy for ancient character images[J].IEEE Access,2019,7:81691-81700.
[11] 陈扬,王金亮,夏炜,等.基于特征自动提取的足迹图像聚类方法[J].计算机科学,2021,48(S1):255-259.
[12] ZHAO H,CHU H,ZHANG Y,et al.Improvement of ancient shui character recognition model based on convolutional neural network[J].IEEE Access,2020,8:33080-33087.
[13] WANG X,GUPTA A.Unsupervised learning of visual representations using videos[C]//Proceedings of the IEEE International Conference on Computer Vision.Santiago:ICCV,2015:2794-2802.
[14] 魏银华.基于Python的古汉语文本聚类应用研究[D].大连:大连理工大学,2018.
[15] 李丁园,李晓杰.基于多尺度残差卷积自编码器的图像聚类方法[J].吉林大学学报(信息科学版),2022,40(4):684-687.

相似文献/References:

[1]郭洪壮,金小峰.基于HRCenterNet模型改进的朝鲜语古籍文字检测方法[J].延边大学学报(自然科学版),2022,(03):235.
 GUO Hongzhuang,JIN Xiaofeng.Korean ancient books character detection method based on improved HRCenterNet model[J].Journal of Yanbian University,2022,(02):235.

备注/Memo

收稿日期: 2023 03 20
基金项目: 延边大学外国语言文学世界一流学科建设项目(18YLPY14);国家社会科学基金重大项目(18ZDA306);延边大学应用基础研究项目(延大科合字(2021)第2号)
第一作者: 刘晓童(1998—),女,硕士研究生,研究方向为计算机视觉.
通信作者: 金小峰(1970—),男(朝鲜族),硕士,教授,研究方向为语音信息处理、计算机视觉.

更新日期/Last Update: 2023-06-20