[1]吴罗义,郑航.一类具有阶段结构的时滞捕食系统的正周期解[J].延边大学学报(自然科学版),2020,46(04):289-294,325.
 WU Luoyi,ZHENG Hang.Periodic solution of delayed predator - prey model with stage – structured[J].Journal of Yanbian University,2020,46(04):289-294,325.
点击复制

一类具有阶段结构的时滞捕食系统的正周期解

参考文献/References:

[1] LOTKA A. Analytical note on certain rhythmic relations in organic systems[J]. Proc Natl Acad Sci USA,1920(6):410-415.
[2] VOLTERRA V. Variazionie fluttuazioni del numero dindividui in specie animal conviventi[J]. Mem R Accad Naz Lincei, 1926,6(2):31-113.
[3] HSU S B, HWANG T W. Global analysis of the Michaelis -Menten type ratio -dependent predator -prey system[J]. Math Biol, 2001,42:489-506.
[4] LIAO X, OU YANG Z, XHOU S. Permanence of species in non -autonomous discrete Lotka -Volterra competitive system with delays and feedback control[J]. Appl Math, 2008,211:1-10.
[5] 范猛,王克.一类具有Holling H型功能性反应的捕食者-食饵系统全局周期解的存在性[J].数学物理学报,2001,21A(4):492-497.
[6] FAN M, WANG Q, ZOU X, et al. Dynamics of a non -autonomous ratio -dependent predator -prey system[J]. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 2003,133(1):97-118.
[7] 傅金波.一类具有相互干扰的食饵-捕食者系统的定性分析[J].系统科学与数学,2017,37(4):1166-1178.
[8] XIA Y H, CAO J, CHENG S S. Multiple periodic solutious of prelayed stage -tructured predator -prey model with non -monotone functional responses[J]. Comput Apple Math, 2014,258:87-98.
[9] 杨英钟.具有阶段结构和反馈控制的非自治单种群系统的正周期解[J].沈阳大学学报(自然科学版),2018,30(6):511-515.
[10] 陈凤德,陈晓星,张惠英.捕食者具有阶段结构Holling Ⅱ类功能性反应的捕食系统正周期解的存在性以及全局吸引性[J].数学物理学报,2006(1):93-103.
[11] WEI F, FU Q. Hopf bifurcation and stability for predator -prey systems with Beddington -DeAngelis type functional response and stage structure for prey incorporating refuge[J]. Appl Math Model, 2016,40:126-134.
[12] SRINIVASU P, PRASAD B, VENKATESULU M. Biological control through provision of additional food to predators: a theoretical study[J]. Theor Popul Biol, 2007,72:111-120.
[13] BAI Y Z, LI Y Y. Stability and Hopf bifurcation for a stage -structured predator -prey model incorporating refuge for prey and additional food for predator[J]. Advances in Difference Equations, 2019,42:1-20.
[14] GAINES R E, MAWHIN T L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin:Springer -Verlag, 1977.

相似文献/References:

[1]吴罗义.一类具有附加食物的Leslic - Gower捕食者-食饵模型的定性分析[J].延边大学学报(自然科学版),2022,(02):118.
 WU Luoyi.Qualitative analysis of a Leslic - Gower type predator - prey model with additional food[J].Journal of Yanbian University,2022,(04):118.

备注/Memo

收稿日期: 2020-10-03 作者简介: 吴罗义(1978—),男,讲师,研究方向为生物数学.
基金项目: 福建省中青年教师教育科研项目(JT180558); 武夷学院校科研资金资助项目(XL201509)

更新日期/Last Update: 2020-12-20