HAN Qiyue,LI Chunhua*.Decay estimates of solutions to a class of nonlinear Schr?dinger equations[J].Journal of Yanbian University,2020,46(01):24-27.
一类非线性薛定谔方程解的衰减估计
- Title:
- Decay estimates of solutions to a class of nonlinear Schr?dinger equations
- 文章编号:
- 1004-4353(2020)01-0024-04
- Keywords:
- nonlinear Schr?dinger equation; subcritical nonlinearity; strong dissipative condition; decay estimate
- 分类号:
- O175.29
- 文献标志码:
- A
- 摘要:
- 研究了一类具有次临界非线性项的薛定谔方程的大初值问题.在强耗散条件下,分析了非线性薛定谔方程i tv+1/22xv=λ|v|p -1v+ia/((1+t)(p-1))v整体解的L2衰减估计,所得结果完善了文献[4]的结论.
- Abstract:
- We consider the large initial problem for a class of nonlinear Schr?dinger equations with subcritical nonlinearities. Under a strong dissipative condition, L2 decay estimates of global solutions to the nonlinear Schr?dinger equation i tv+1/22xv=λ|v|p -1v+ia/((1+t)(p-1))v are shown. Theresearch result supplement the results of the literature [4].
参考文献/References:
[1] AGRAWAL G P. Nonlinear Fiber Optics[M]. New York: Academic Press, 1995.
[2] OHTA M, TODOROVA G. Remarks on global existence and blowup for damped nonlinear Schr?dinger equations[J]. Discrete and Continuous Dynamical Systems, 2009,23(4):1323-1325.
[3] JIN G, JIN Y, LI C. The initial value problem for nonlinear Schr?dinger equations with a dissipative nonlinearity in one space dimension[J]. Journal of Evolution Equations, 2016,16(4):983-995.
[4] YUAN X T, LI C H. The effect of gain and strong dissipative structures on nonlinear Schr?dinger equations in optical fiber[J]. Advances in Mathematical Physics. https://doi.org/10.1155/2019/7297090.{i tv+1/22xv=λ|v|p -1v+ia/((1+t)(p-1))v,
v(0,x)=v0(x)(2)
相似文献/References:
[1]马瑞,李春花.一类具有位势的二维非线性薛定谔系统解的渐近行为[J].延边大学学报(自然科学版),2021,47(04):283.
MA Rui,LI Chunhua.Asymptotic behavior of solutions to nonlinear Schrdinger systems with potentials in 2D[J].Journal of Yanbian University,2021,47(01):283.
[2]郭佳鑫,李春花.二维耗散非线性薛定谔方程解的时间衰减估计[J].延边大学学报(自然科学版),2023,(04):283.
GUO Jiaxin,LI Chunhua.Time decay estimates of solutions to dissipative nonlinear Schr?dinger equations in two space dimensions[J].Journal of Yanbian University,2023,(01):283.
备注/Memo
收稿日期: 2020-02-16
基金项目: 吉林省教育厅项目(JJKH20180892KJ)
*通信作者: 李春花(1977—),女,副教授,研究方向为偏微分方程.