YANG Haoran,YAO Yao.Medical process modeling optimization based on Petri Net[J].Journal of Yanbian University,2018,44(04):332-335.
基于Petri网的医疗流程建模优化
- Title:
- Medical process modeling optimization based on Petri Net
- Keywords:
- Petri Net; medical process model; optimization
- 分类号:
- TP391.9
- 文献标志码:
- A
- 摘要:
- 为减少患者就医时抽血化验的次数,提出了一种基于Petri网的医疗流程模型的优化分析方法.首先介绍了Petri网的基本概念; 然后在确保合理的医疗流程前提下,通过合并变迁对医疗流程进行了建模优化; 最后利用PIPE软件对优化后的模型进行了模拟运行,结果表明本文方法能够有效改善医疗流程,节省医疗资源.
- Abstract:
- In order to reduce the number of blood samples taken from patients, an optimized analysis method of medical process model based on Petri Net was proposed. Firstly, the basic concepts of Petri Net are introduced, and then modeling and optimizing medical processes through mergers transitions while ensuring reasonable medical processes. Finally, simulate the optimized model with PIPE software. The results show that this method can effectively improve medical procedures and save medical resources.
参考文献/References:
[1] 吴哲辉.Petri网理论[M].北京:机械工业出版社,2006:1-28.
[2] Sobociński P, Stephens O. Penrose: Putting Compositionality to Work for Petri Net Reachability[M]. Algebra and Coalgebra in Computer Science: Springer Berlin Heidelberg, 2013:346-352.
[3] Gerth C, Kuster J M, Engels G. Detection of semantically equivalent frangments for business process model change management[C]//IEEE International Conference on Service Computing. San Francisco: ACM Press, 2010:57-64.
[4] Polyvyanyy A, Armas-Cervantes A, Dumas M, et al. On the expressive power of behavioral profiles[J]. Formal Aspects of Computing, 2016,28(4):597-613.
[5] Fang Xianwen, Wu Junzhi, Liu Xiangwei. An optimized method of business process mining based on the behavior profile of Petri Nets[J]. Information Technology Journal, 2014,13(1):86-93.
[6] Wang Shouguang, Zhou Mengzhou, Li Zhiwu, et al. A new modified reachability tree approach and its applications to unbounded Petri Nets[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2013,43(4):932-940.
[7] 李雪萍.基于Petri网行为轮廓的医疗业务流程挖掘方法[D].淮南:安徽理工大学,2017.
[8] Smirnov S, Weidlich M, Mendling J. Business process model abstraction based on behavioral profiles[C]//In 8th International Conference, San Francisco. Heidelberg: Springer Berlin Heidelberg, 2010,6470:1-16.
[9] Jensen M T. Improving robustness and flexibility of tardiness and total flow-time job shops using robustness measures[J]. Applied Soft Computing, 2001,1(1):35-52.
相似文献/References:
[1]严顺,方贤文*,刘祥伟.优先权Petri网在电梯运行控制中的应用[J].延边大学学报(自然科学版),2017,43(03):242.
YAN Shun,FANG Xianwen*,LIU Xiangwei.Application of priority Petri net in the controlling ofelevator operation[J].Journal of Yanbian University,2017,43(04):242.
[2]应丽,王丽丽,刘祥伟.基于Petri网的门诊就医流程模型优化分析[J].延边大学学报(自然科学版),2018,44(01):79.
YING Li,WANG Lili,LIU Xiangwei.Optimization analysis of outpatient service processbased on Petri net modeling[J].Journal of Yanbian University,2018,44(04):79.
[3]卢可,王丽丽.基于Petri网的选课系统建模优化[J].延边大学学报(自然科学版),2018,44(03):246.
LU Ke,WANG Lili.Modeling optimization of course selection systembased on Petri net[J].Journal of Yanbian University,2018,44(04):246.
[4]方娜,刘祥伟.基于Petri网的网络订票系统换乘问题的建模优化[J].延边大学学报(自然科学版),2018,44(04):336.
FANG Na,LIU Xiangwei.Modeling and optimization of transfer problemin network booking system based on Petri Net[J].Journal of Yanbian University,2018,44(04):336.
[5]马婷婷.基于Petri网的就医预检分诊模型优化分析[J].延边大学学报(自然科学版),2019,45(02):145.
MA Tingting.Optimization analysis of medical pre-examination triagebased on Petri net modeling[J].Journal of Yanbian University,2019,45(04):145.
[6]蔡婷婷,刘祥伟.基于Petri网的危险品出入库流程建模优化[J].延边大学学报(自然科学版),2020,46(01):85.
CAI Tingting,LIU Xiangwei.Modeling and optimization of inbound and outbound processes of dangerous goods based on Petri net[J].Journal of Yanbian University,2020,46(04):85.
[7]方新升,刘祥伟*.基于Petri网的高校网上预约报销系统的建模与优化[J].延边大学学报(自然科学版),2021,47(03):255.
FANG Xinsheng,LIU Xiangwei*.Modeling and optimization of online appointment reimbursement system in colleges based on Petri net[J].Journal of Yanbian University,2021,47(04):255.
备注/Memo
收稿日期: 2018-08-19 作者简介: 杨皓然(1995—),男,硕士研究生,研究方向为Petri网.
基金项目: 国家自然科学基金资助项目(61402011,61572035); 安徽省自然科学基金资助项目(1508085MF111,
1608085QF149); 安徽省高校自然科学基金资助重点项目(KJ2016A208)