[1]郭晓慧.基于LDA主题模型的文本语料情感分类改进方法[J].延边大学学报(自然科学版),2018,44(03):266-273.
 GUO Xiaohui.The improved method based on LDA topic model foremotion classification of text corpus[J].Journal of Yanbian University,2018,44(03):266-273.
点击复制

基于LDA主题模型的文本语料情感分类改进方法

参考文献/References:


[1] 庄丽榕,叶东毅.基于CSLSTM网络的文本情感分类[J].计算机系统应用,2018,27(2):230-235.
[2] 周红庆,吴扬扬.中文客户评论对象特征的抽取与聚类方法[J].微型机与应用,2014,33(15):69-71.
[3] Hai Zhen, Chang Kuiyu, Kim J. Implicit feature identification via co-occurrence association rule mining[C]//Proceedings of the 12th International Conference on Computational Linguistics and Intelligent Text Processing, 2011:393-404.
[4] Wang Wei, Xu Hua, Wan Wei. Implicit feature identification via hybrid association rule mining[J]. Expert Systems with Applications, 2013,40(9):3518-3531.
[5] Chinsha T C, Joseph S. Asyntactic approach for aspect based opinion mining[C]//2015 IEEE International Conference on Semantic Computing, 2015:24-31.
[6] 张庆庆,刘西林.基于深度信念网络的文本情感分类研究[J].西北工业大学学报(社会科学版),2016,36(1):62-66.
[7] Tang D Y, Qin B, Liu T, et al. Document modeling with gated recurrent neural network for sentiment classification[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal, 2015:1422-1432.
[8] 唐晓波,朱娟,杨丰华.基于情感本体和KNN算法的在线评论情感分类研究[J].情报理论与实践,2016,39(6):110-114.
[9] 刘鸿宇,赵妍妍,秦兵,等.评价对象抽取及其倾向性分析[J].中文信息学报,2010,24(1):84-88.
[10] 尹裴,王洪伟.面向产品特征的中文在线评论情感分类:以本体建模为方法[J].系统管理学报,2016,25(1):103-114.
[11] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3(4):993-1022.
[12] 夏火松,刘建,朱慧毅.中文情感分类挖掘预处理关键技术比较研究[J].情报杂志,2011,30(9):160-163.
[13] Jin J, Liu Y, Ji P, et al. Understanding big consumer opinion data for market-driven product design[J]. International Journal of Production Research, 2016,54(10):3019.
[14] 李实,叶强,李一军,等.中文网络客户评论的产品特征挖掘方法研究[J].管理科学学报,2009,12(2):185-189.
[15] 李杰,李欢.基于深度学习的短文本评论产品特征提取及情感分类研究[J].情报理论与实践,2018,41(2):141-146.
[16] 杨丰凯,袁海静.稳健学生t回归模型变点估计的Gibbs抽样算法[J].统计与决策,2017,22(16):10-14.
[17] Lecun Y, Bengio Y, Hington G. Deep learning[J]. Nature, 2015,521(7553):436-444.

备注/Memo

收稿日期: 2018-05-21 基金项目: 福建省教育厅科研项目(JA15631)
作者简介: 郭晓慧(1984—),女,讲师,研究方向为个性化推荐算法、数据挖掘.

更新日期/Last Update: 2018-11-30