¡¡LIN Qiutong,GE Qi*.Existence of multiple positive solutions for a class of boundaryvalue problems of fractional q -differences with p -Laplacian[J].Journal of Yanbian University,2018,44(03):199-207.
Ò»Àà´øÓÐ p -LaplacianËã×ӵķÖÊý½× q -²î·Ö±ßÖµÎÊÌâµÄ¶àÖØÕý½âµÄ´æÔÚÐÔ
- Title:
- Existence of multiple positive solutions for a class of boundary value problems of fractional q -differences with p -Laplacian
- Keywords:
- fractional q -differences; p -Laplacian operator; Avery-Peterson fixed point theorems; multiple positive solutions
- ·ÖÀàºÅ:
- O175.6
- ÎÄÏ×±êÖ¾Âë:
- A
- ÕªÒª:
- Ñо¿ÁËÒ»Àà´øÓÐp -LaplacianËã×ÓºÍq -»ý·Ö±ßÖµÌõ¼þµÄ·ÖÊý½×q -²î·Ö·½³Ì¶àÖØÕý½âµÄ´æÔÚÐÔ.Ê×ÏÈ·ÖÎöÁ˸ñÁÖº¯ÊýµÄÐÔÖÊ,È»ºóÀûÓÃAvery-Peterson²»¶¯µã¶¨Àí½¨Á¢Á˸÷½³ÌÖÁÉÙ´æÔÚ3¸öÕý½âµÄ³ä·ÖÌõ¼þ.
- Abstract:
- This paper is concerned with the existence of positive solutions for integral boundary value problems of fractional q -differences equations with p -Laplacian operator. Firstly, some characteristics of the Green function are analyzed. Then, using Avery-Peterson fixed point theorems, sufficient conditions for the existence of three positive solutions for the problem are obtained.
²Î¿¼ÎÄÏ×/References:
[1] Ferreira R A C. Nontrivial solutions for fractional q -difference boundary value problems[J]. Theory Differ Equ, 2010,70:1-10.
[2] Ferreira R A C. Positive solutions for a class of boundary value problems with fractional q -differences[J]. Computers and Mathematics with Applications, 2011,61:367-373.
[3] Zhao Yulin, Chen Haibo, Zhang Qiming. Existence results for fractional q -difference equations with nonlocal q -integral boundary conditions[J]. Advances in Difference Equations, 2013(2013):48.
[4] ËïÃ÷ÕÜ,º«óãˬ.Ò»Àà·ÖÊý½×q -²î·Ö±ßÖµÎÊÌâµÄÕý½â[J].Ñӱߴóѧѧ±¨(×ÔÈ»¿Æѧ°æ),2013,39(4):252-255.
[5] Ricardo Almeida, Nat¨¢lia Martins. Existence results for fractional q -difference equations of order ¦Á¡Ê]2,3[ with three-point boundary conditions[J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19(6):1675-1685.
[6] Serkan Araci, Erdo(¡¦overg)an ÿðþ ‰C en, Mehmet Açikgöz, et al. Existence and uniqueness of positive and nondecreasing solutions for a class of fractional boundary value problems involving the p -Laplacian operator[J]. Advances in Difference Equations, 2015(2015):12.
[7] Ge Qi, Hou Chengmin. Positive solution for a class of p -Laplacian fractional q -difference equations involving the integral boundary condition[J]. Mathematica Aeterna, 2015,5(5):927-944.
[8] ¸ðçù,ºî³ÉÃô.Ò»Àà·ÖÊý½×q -²î·Ö±ßÖµÎÊÌâµÄ¶àÖØÕý½âµÄ´æÔÚÐÔ[J].ºÚÁú½´óѧ×ÔÈ»¿Æѧѧ±¨,2015,32(2):163-170.
[9] ¸ðçù,ºî³ÉÃô.Ò»ÀàÓÐÐò·ÖÊý½×q -²î·Ö·½³Ì½âµÄ´æÔÚÐÔ[J].¼ªÁÖ´óѧѧ±¨(Àíѧ°æ),2015,53(3):377-382.
[10] Zhang Luchao, Zhang Weiguo, Liu Xiping, et al. Existence of positive solutions for integral boundary value problems of fractional differential equations with p -Laplacian[J]. Advances in Difference Equations, 2017,2017(36):1-19.
ÏàËÆÎÄÏ×/References:
[1]Îâ·²,¶«ÓêÞ±,ºî³ÉÃô*.´øÓÐp-LaplacianËã×ÓµÄËĽ×Æ«²î·Ö·½³ÌµÄ¶àÖØͬËÞ½â[J].Ñӱߴóѧѧ±¨(×ÔÈ»¿Æѧ°æ),2016,42(01):1.
¡¡WU Fan,DONG Yuwei,HOU Chengmin*.Multiple homoclinic solutions for the partial difference equations with p-Laplacian operator[J].Journal of Yanbian University,2016,42(03):1.
[2]¶Ç¿,ºî³ÉÃô*.¾ßÓÐp -LaplacianËã×ÓµÄdelta-nabla·ÖÊý½×
²î·Ö±ßÖµÎÊÌâÕý½âµÄ´æÔÚÐÔ[J].Ñӱߴóѧѧ±¨(×ÔÈ»¿Æѧ°æ),2019,45(04):283.
¡¡DONG Qiang,HOU Chengmin*.Existence of positive solutions for p -Laplacian fractional differenceinvolving the discrete delta-nabla fractional boundary value problem[J].Journal of Yanbian University,2019,45(03):283.
±¸×¢/Memo
ÊÕ¸åÈÕÆÚ: 2018-05-16 »ù½ðÏîÄ¿: ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ð×ÊÖúÏîÄ¿(11161049)
*ͨÐÅ×÷Õß: ¸ðçù(1975¡ª),Å®,¸±½ÌÊÚ,Ñо¿·½ÏòΪ³£Î¢·Ö·½³ÌÀíÂÛ¼°ÆäÓ¦ÓÃ.