CHEN Dongdong,ZHU Aidong*.One-step implementation of an unconventional geometric phase gate with atoms trapped in coupled cavities[J].Journal of Yanbian University,2017,43(02):119-124.
利用耦合腔中的原子一步实现非传统几何相位门
- Title:
- One-step implementation of an unconventional geometric phase gate with atoms trapped in coupled cavities
- 分类号:
- O431
- 文献标志码:
- A
- 摘要:
- 利用囚禁在耦合腔中的三能级原子一步实现了两比特非传统几何相位门.在门操作期间,原子态不演化,而腔模在相空间中沿着一个闭合路径移动,从而获得一个高保真的非传统几何相位门.此方案不需要额外的单量子比特操作,一步完成几何相位门的构建,极大地简化了实验步骤; 同时大失谐条件有效地抑制了原子自发辐射,使得方案更具有鲁棒性.数值模拟表明,此方案可以实现高保真度的相位门.
- Abstract:
- A one-step scheme is proposed for implementing a two qubit unconventional geometric phase gate with two three-level atomic separately trapped in two coupled cavities. During the gate operation, the two atoms undergo no transitions, while the cavity modes are displaced along a closed path in the phase space. In this way, an unconventional geometric phase is obtained conditioned on the atomic states with a high fidelity. Since no additional single-qubit operation is required, the geometric phase gate is constructed only by one step, which greatly simplifies the experimental implementation. Moreover, the atomic spontaneous emission is effectively suppressed due to large detuning, which makes the scheme robust against decoherence. The numerical simulation shows that a high fidelity can be achieved.
参考文献/References:
[1] Zheng S B. Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities[J]. Appl Phys Lett, 2009,94(15):154101.
[2] Zhu S L, Wang Z D. Unconventional geometric quantum computation[J]. Phys Rev Lett, 2003,91(18):187902.
[3] Zheng S B. Unconventional geometric quantum phase gates with a cavity QED system[J]. Phys Rev A, 2012,70(70):218-221.
[4] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proc R Soc London, 1984,392(1802):45-57.
[5] Aharonov Y, Anandan J. Phase change during a cyclic quantum evolution[J]. Phys Rev Lett, 1987,58(16):1593-1596.
[6] Anandan J. The geometric phase[J]. Nature, 1992,360(6402):307-313.
[7] Samuel J, Bhandari R. General setting for Berry’s phase[J]. Phys Rev Lett, 1988,60(23):2339-2342.
[8] Wilczek F, Zee A. Appearance of gauge structure in simple dynamical systems[J]. Phys Rev Lett, 1984,52(24):2111-2114.
[9] Gopinath T, Kumar A. Implementation of controlled phase shift gates and Collins version of Deutsc-Jozsa algorithm on a quadrupolar spin-7/2 nucleus using non-adiabatic geometric phases[J]. J Magn Reson, 2008,193(2):168-176.
[10] Samuel J, Bhandari R. General setting for Berry’s phase[J]. Phys Rev Lett, 1988,60(23):2339-2342.
[11] Falci G, Fazio R, Palma G M, et al. Detection of geometric phases in superconducting nanocircuits[J]. Nature, 2000,407(6802):355-358.
[12] Zheng S B. Geometric phase for a driven quantum field subject to decoherence[J]. Phys Rev A, 2015,91(5):052117.
[13] Xue Z Y, Wang Z D. Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity[J]. Phys Rev A, 2007,75(6):064303.
[14] Zhang J Q, Yu Y F, Zhang Z M. Unconventional geometric phase gate with two nonidentical quantum dots trapped in a photonic crystal cavity[J]. J Opt Soc Am B, 2010,28(8):1959-1963.
[15] Zhang A P, Zhang X X, Wang Z M, et al. Unconventional geometric phase gates for two distant atoms trapped in spatially separate cavities[J]. Mod Phys Lett B, 2014,28(9):458-465.
[16] Chen C Y, Feng M, Zhang X L, et al. Strong-driving-assisted unconventional geometric logic gate in cavity QED[J]. Phys Rev A, 2006,73(3):501-507.
[17] Zheng S B, Yang C P, Nori F. Arbitrary control of coherent dynamics for distant qubits in a quantum network[J]. Phys Rev A, 2010,82(4):3147-3148.
[18] Wu C, Wang Z, Feng X L, et al. Unconventional geometric quantum computation in a two-mode cavity[J]. Phys Rev A, 2007,76(2):1188-1190.
[19] Joshi A, Xiao M. Cavity-QED-based unconventional geometric phase gates with bichromatic field modes[J]. Phys Lett A, 2006,359(5):390-395.
[20] Feng X L, Wang Z, Wu C, et al. A scheme for unconventional geometric quantum computation in cavity QED[J]. Phys Rev A, 2006,75(5):497-500.
[21] Chen Y Y, Feng X L, Oh C H. Geometric entangling gates for coupled cavity system in decoherence-free subspaces[J]. Opt Commun, 2011,285(24):5554-5557.
[22] Cen L X, Wang Z D, Wang S J. Scalable quantum computation in decoherence-free subspaces with trapped ions[J]. Phys Rev A, 2006,74(3):152-152.
[23] Feng X L, Wu C, Sun H, et al. Geometric entangling gates in decoherence-free subspaces with minimal requirements[J]. Phys Rev Lett, 2009,103(20):200501.
[24] Leibfried D, Demarco B, Meyer V, et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate[J]. Nature, 2003,422(6930):412-415.
[25] Zhou Z, Chu S I, Han S. Suppression of energy-relaxation-induced decoherence in Λ-type three-level SQUID flux qubits: A dark-state approach[J]. Phys Rev B, 2004,70(9):094513.
[26] Song X K, Ai Q, Qiu J, et al. Physically feasible three-level superadiabatic quantum driving with multiple Schr(¨overo)dinger dynamics[J]. Phys Rev A, 2016,93(5):052324.
[27] James D F V. Quantum computation with hot and cold ions: an assessment of proposed schemes[J].Fortschr Phys, 2000,48(9/11):53-67.
[28] Walls D F, Milburn G J, Garrison J C. Quantum Optics[M]. Springer-Verlag, 1994.
相似文献/References:
[1]张英俏.电路量子电动力学系统中的几何相位门制备[J].延边大学学报(自然科学版),2015,41(02):142.
ZHANG Yingqiao.Generation of a geometric phase gate in circuit QED[J].Journal of Yanbian University,2015,41(02):142.
备注/Memo
收稿日期: 2017-04-20 基金项目: 国家自然科学基金资助项目(11564041,11165015)
*通信作者: 朱爱东(1968—),女,博士,教授,研究方向为量子光学和量子信息学.