[1]陈冬冬,朱爱东*.利用耦合腔中的原子一步实现非传统几何相位门[J].延边大学学报(自然科学版),2017,43(02):119-124.
 CHEN Dongdong,ZHU Aidong*.One-step implementation of an unconventional geometric phase gate with atoms trapped in coupled cavities[J].Journal of Yanbian University,2017,43(02):119-124.
点击复制

利用耦合腔中的原子一步实现非传统几何相位门

参考文献/References:

[1] Zheng S B. Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities[J]. Appl Phys Lett, 2009,94(15):154101.
[2] Zhu S L, Wang Z D. Unconventional geometric quantum computation[J]. Phys Rev Lett, 2003,91(18):187902.
[3] Zheng S B. Unconventional geometric quantum phase gates with a cavity QED system[J]. Phys Rev A, 2012,70(70):218-221.
[4] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proc R Soc London, 1984,392(1802):45-57.
[5] Aharonov Y, Anandan J. Phase change during a cyclic quantum evolution[J]. Phys Rev Lett, 1987,58(16):1593-1596.
[6] Anandan J. The geometric phase[J]. Nature, 1992,360(6402):307-313.
[7] Samuel J, Bhandari R. General setting for Berry’s phase[J]. Phys Rev Lett, 1988,60(23):2339-2342.
[8] Wilczek F, Zee A. Appearance of gauge structure in simple dynamical systems[J]. Phys Rev Lett, 1984,52(24):2111-2114.
[9] Gopinath T, Kumar A. Implementation of controlled phase shift gates and Collins version of Deutsc-Jozsa algorithm on a quadrupolar spin-7/2 nucleus using non-adiabatic geometric phases[J]. J Magn Reson, 2008,193(2):168-176.
[10] Samuel J, Bhandari R. General setting for Berry’s phase[J]. Phys Rev Lett, 1988,60(23):2339-2342.
[11] Falci G, Fazio R, Palma G M, et al. Detection of geometric phases in superconducting nanocircuits[J]. Nature, 2000,407(6802):355-358.
[12] Zheng S B. Geometric phase for a driven quantum field subject to decoherence[J]. Phys Rev A, 2015,91(5):052117.
[13] Xue Z Y, Wang Z D. Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity[J]. Phys Rev A, 2007,75(6):064303.
[14] Zhang J Q, Yu Y F, Zhang Z M. Unconventional geometric phase gate with two nonidentical quantum dots trapped in a photonic crystal cavity[J]. J Opt Soc Am B, 2010,28(8):1959-1963.
[15] Zhang A P, Zhang X X, Wang Z M, et al. Unconventional geometric phase gates for two distant atoms trapped in spatially separate cavities[J]. Mod Phys Lett B, 2014,28(9):458-465.
[16] Chen C Y, Feng M, Zhang X L, et al. Strong-driving-assisted unconventional geometric logic gate in cavity QED[J]. Phys Rev A, 2006,73(3):501-507.
[17] Zheng S B, Yang C P, Nori F. Arbitrary control of coherent dynamics for distant qubits in a quantum network[J]. Phys Rev A, 2010,82(4):3147-3148.
[18] Wu C, Wang Z, Feng X L, et al. Unconventional geometric quantum computation in a two-mode cavity[J]. Phys Rev A, 2007,76(2):1188-1190.
[19] Joshi A, Xiao M. Cavity-QED-based unconventional geometric phase gates with bichromatic field modes[J]. Phys Lett A, 2006,359(5):390-395.
[20] Feng X L, Wang Z, Wu C, et al. A scheme for unconventional geometric quantum computation in cavity QED[J]. Phys Rev A, 2006,75(5):497-500.
[21] Chen Y Y, Feng X L, Oh C H. Geometric entangling gates for coupled cavity system in decoherence-free subspaces[J]. Opt Commun, 2011,285(24):5554-5557.
[22] Cen L X, Wang Z D, Wang S J. Scalable quantum computation in decoherence-free subspaces with trapped ions[J]. Phys Rev A, 2006,74(3):152-152.
[23] Feng X L, Wu C, Sun H, et al. Geometric entangling gates in decoherence-free subspaces with minimal requirements[J]. Phys Rev Lett, 2009,103(20):200501.
[24] Leibfried D, Demarco B, Meyer V, et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate[J]. Nature, 2003,422(6930):412-415.
[25] Zhou Z, Chu S I, Han S. Suppression of energy-relaxation-induced decoherence in Λ-type three-level SQUID flux qubits: A dark-state approach[J]. Phys Rev B, 2004,70(9):094513.
[26] Song X K, Ai Q, Qiu J, et al. Physically feasible three-level superadiabatic quantum driving with multiple Schr(¨overo)dinger dynamics[J]. Phys Rev A, 2016,93(5):052324.
[27] James D F V. Quantum computation with hot and cold ions: an assessment of proposed schemes[J].Fortschr Phys, 2000,48(9/11):53-67.
[28] Walls D F, Milburn G J, Garrison J C. Quantum Optics[M]. Springer-Verlag, 1994.

相似文献/References:

[1]张英俏.电路量子电动力学系统中的几何相位门制备[J].延边大学学报(自然科学版),2015,41(02):142.
 ZHANG Yingqiao.Generation of a geometric phase gate in circuit QED[J].Journal of Yanbian University,2015,41(02):142.

备注/Memo

收稿日期: 2017-04-20 基金项目: 国家自然科学基金资助项目(11564041,11165015)
*通信作者: 朱爱东(1968—),女,博士,教授,研究方向为量子光学和量子信息学.

更新日期/Last Update: 2017-06-20