ZHANG Jiehua.Almost periodic solutions of a delayed discrete mutualism model with feedback controls[J].Journal of Yanbian University,2016,42(02):108-114.
具时滞和反馈控制的离散互惠系统的概周期解
- Title:
- Almost periodic solutions of a delayed discrete mutualism model with feedback controls
- 分类号:
- O175.14
- 文献标志码:
- A
- 摘要:
- 研究具有时滞和反馈控制的两种群离散互惠系统模型,通过运用差分不等式和构造适当的Lyapunov函数,证明了该系统具有持久性和全局吸引性.利用差分概周期方程的壳理论,得到了保证该系统存在唯一的概周期解的充分条件.
- Abstract:
- A two species discrete mutualism system with time delay and feedback controls is studied in this paper. By using the difference inequality theory and constructing the suitable Lyapunov functional, we show that the system is permanent and globally attractive. Further, by applying almost periodic functional hull theory, we obtain a set of sufficient conditions which guarantee the existence of a unique global attractive positive almost periodic sequence solution of the system.
参考文献/References:
[1] Li Y K. Positive periodic solutions of a discrete mutualism model with time delays[J]. Int J Math Math Sci, 2005,2005(4):499-506.
[2] Chen F D. Permanence for the discrete mutualism model with time delays[J]. Math Comput Model, 2008,47:431-435.
[3] Liu M, Wang K. Analysis of a stochastic autonomous mutualism model[J]. J Math Anal Appl, 2013,402(1):392-403.
[4] Chen F D, You M S. Permanence for an integrodifferential model of mutualism[J]. Appl Math Comput, 2007,186(1):30-34.
[5] Zhang H, Li Y Q, Jing B, et al. Global stability of almost periodic solution of multispecies mutualism system with time delays and impulsive effects[J]. Appl Math Comput, 2014,232:1138-1150.
[6] Li Z, Han M A, Chen F D. Almost periodic solutions of a discrete almost periodic logistic equation with delay[J]. Appl Math Comput, 2014,232:743-751.
[7] Chen L J, Chen L J, Li Z. Permanence of a delayed discrete mutualism model with feedback controls[J]. Math Comput Model, 2009,50:1083-1089.
[8] Zhang S N. Existence of almost periodic solution for difference systems[J]. Ann Differ Equ, 2000,16(2):184-206.
[9] Fink A M, Seifert G. Liapunov functions and almost periodic solutions for almost periodic systems[J]. J Differential Equations, 1969,5:307-313.
[10] Li Z, Chen F D, He M X. Almost periodie solutions of a diserete Lotka-Volterra competition system with delays[J]. Nonlinear Anal Real World Appl, 2011,12(4):2344-2355.
[11] Yuan R, Hong J L. The existence of almost periodic solutions for a class of differential equations with piecewise constant argument[J]. Nonlinear Anal, 1997,28(8):1439-1450.
[12] Yang X T. Uniform persistence and periodic solutions for a discrete predator-prey system with delays[J]. J Math Anal Appl, 2006,316(1):161-177.
[13] Fan Y H, Wang L L. Permanence for a discrete model with feedback control and delay[J]. Discrete Dyn Nat Soc, 2008:1-8. Article ID 945109.
相似文献/References:
[1]陈江彬.具反馈控制和Holling-III类功能反应的修正Leslie-Gower捕食系统研究[J].延边大学学报(自然科学版),2017,43(03):189.
CHEN Jiangbin.Dynamics of a modified Leslie-Gower predator-prey system withHolling-type III response function and feedback controls[J].Journal of Yanbian University,2017,43(02):189.
[2]张杰华,王清娟.一类具有Beddington - DeAngelis功能反应的离散竞争系统的概周期解[J].延边大学学报(自然科学版),2021,47(02):105.
ZHANG Jiehua,WANG Qingjuan.Almost periodic solutions of a discrete competitive system with Beddington - DeAngelis functional response[J].Journal of Yanbian University,2021,47(02):105.
备注/Memo
收稿日期: 2016-03-27作者简介: 张杰华(1983—),女,讲师,研究方向为微分方程.