[1]张杰华.具时滞和反馈控制的离散互惠系统的概周期解[J].延边大学学报(自然科学版),2016,42(02):108-114.
 ZHANG Jiehua.Almost periodic solutions of a delayed discrete mutualism model with feedback controls[J].Journal of Yanbian University,2016,42(02):108-114.
点击复制

具时滞和反馈控制的离散互惠系统的概周期解

参考文献/References:

[1] Li Y K. Positive periodic solutions of a discrete mutualism model with time delays[J]. Int J Math Math Sci, 2005,2005(4):499-506.
[2] Chen F D. Permanence for the discrete mutualism model with time delays[J]. Math Comput Model, 2008,47:431-435.
[3] Liu M, Wang K. Analysis of a stochastic autonomous mutualism model[J]. J Math Anal Appl, 2013,402(1):392-403.
[4] Chen F D, You M S. Permanence for an integrodifferential model of mutualism[J]. Appl Math Comput, 2007,186(1):30-34.
[5] Zhang H, Li Y Q, Jing B, et al. Global stability of almost periodic solution of multispecies mutualism system with time delays and impulsive effects[J]. Appl Math Comput, 2014,232:1138-1150.
[6] Li Z, Han M A, Chen F D. Almost periodic solutions of a discrete almost periodic logistic equation with delay[J]. Appl Math Comput, 2014,232:743-751.
[7] Chen L J, Chen L J, Li Z. Permanence of a delayed discrete mutualism model with feedback controls[J]. Math Comput Model, 2009,50:1083-1089.
[8] Zhang S N. Existence of almost periodic solution for difference systems[J]. Ann Differ Equ, 2000,16(2):184-206.
[9] Fink A M, Seifert G. Liapunov functions and almost periodic solutions for almost periodic systems[J]. J Differential Equations, 1969,5:307-313.
[10] Li Z, Chen F D, He M X. Almost periodie solutions of a diserete Lotka-Volterra competition system with delays[J]. Nonlinear Anal Real World Appl, 2011,12(4):2344-2355.
[11] Yuan R, Hong J L. The existence of almost periodic solutions for a class of differential equations with piecewise constant argument[J]. Nonlinear Anal, 1997,28(8):1439-1450.
[12] Yang X T. Uniform persistence and periodic solutions for a discrete predator-prey system with delays[J]. J Math Anal Appl, 2006,316(1):161-177.
[13] Fan Y H, Wang L L. Permanence for a discrete model with feedback control and delay[J]. Discrete Dyn Nat Soc, 2008:1-8. Article ID 945109.

相似文献/References:

[1]陈江彬.具反馈控制和Holling-III类功能反应的修正Leslie-Gower捕食系统研究[J].延边大学学报(自然科学版),2017,43(03):189.
 CHEN Jiangbin.Dynamics of a modified Leslie-Gower predator-prey system withHolling-type III response function and feedback controls[J].Journal of Yanbian University,2017,43(02):189.
[2]张杰华,王清娟.一类具有Beddington - DeAngelis功能反应的离散竞争系统的概周期解[J].延边大学学报(自然科学版),2021,47(02):105.
 ZHANG Jiehua,WANG Qingjuan.Almost periodic solutions of a discrete competitive system with Beddington - DeAngelis functional response[J].Journal of Yanbian University,2021,47(02):105.

备注/Memo

收稿日期: 2016-03-27作者简介: 张杰华(1983—),女,讲师,研究方向为微分方程.

更新日期/Last Update: 2016-03-20