LIU Wenbin,JIN Yan,JIANG Jinxi.A home-based combined insurance stochastic model under random interest rates[J].Journal of Yanbian University,2015,41(04):285-291.
一个随机利率下的家庭型联合保险随机模型
- Title:
- A home-based combined insurance stochastic model under random interest rates
- 文章编号:
- 1004-4353(2015)04-0285-07
- Keywords:
- stochastic interest rate; interest force function; combined insurance double stochastic model; years balanced premium
- 分类号:
- O211.9
- 文献标志码:
- A
- 摘要:
- 通过原点反射Brownian运动过程和Poisson过程对保险实务中的利息力随机性作了描述,在此基础上建立了一类由终身寿险、养老保险和储蓄还本3部分组成的可调整保险金额的家庭型联合保险随机模型,并给出了这类保险模型的年均衡保费的一般计算公式和死亡均匀分布(UDD)假设之下较简洁的年均衡保费计算公式,并用实例分析验证了本文结论的合理性和实用性.本文给出的保险模型对解决寿险公司合理收取保费、保险赔付和规避管理风险都具有一定的理论意义和实际应用价值.
- Abstract:
- In this paper, first of all, the randomness of the interest force in insurance business is described by both reflex-origin Brownian motion and Poisson process. Secondly, on this basis, we establish a class of adjustable insurance amount home-based combined insurance double stochastic model by whole life insurance, pension insurance and savings payback part, and a general formula of yearly balanced insurance premiums in this type of insurance and a relatively simple formula of yearly balanced insurance premiums with uniform distribution death(UDD)hypothesis are given. Finally, the rationality and practicality for the conclusions are verified by some examples of the analysis process. Type of this insurance model is consistent with the actual situation, and it has important theoretical and practical value for insurance company to charge a reasonable premium, pay insurance and avoid the manage risk.
参考文献/References:
[1] Pollard J H. On fluctuating interest rates[J]. Bulletin de 1’Association des Actuaries Belges, 1971,66:68-97.
[2] Dhaene J. Stochastic interest rates and auto regressive integrated moving average processes[J]. ASTIN Bulletin, 1989,19(1):131-138.
[3] Gary Parker. Moments of the present value of the future of a portfolio of policies[J]. Scandinavia Actuarial Journal, 1994,1:53-67.
[4] Beekman J A, Fuelling C P. Extra randomness in some annuities in certain annuity models and mortality randomness in some annuities[J]. Insurance: Mathematics and Economics, 1991,10:275-287.
[5] Beekman J A, Fuelling C P. One approach to dual randomness in life insurance[J]. Scandinavian Actuarial Journal, 1993,76(2):173-182.
[6] Pesand, Skinner. Duration for bonds with default risk[J]. Journal of Banking and Finance, 1974,21(4):1-16.
[7] Hoedemakers T, Beirlant J, Goovaerts M J, et al. On the distribution of discounted loss reserves using generalized linear models[J]. Scand Actuarial Journal, 2005(1):25-45.
[8] Yang J P, Wu L. On the limit distribution of n-year term life insurance[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1997,33(5):561-566.
[9] 王明姬,田乃硕.息力函数综合寿险模型[J].运筹与管理,2003,13(1):5-8.
[10] 郭春增,王秀瑜.随机利率下的寿险精算模型[J].统计与决策,2008,9:53-55.
[11] 王丽燕,冯恩民.一种家庭联合保险的双随机模型[J].工程数学学报,2003,20(8):69-72.
[12] 王丽燕,郝亚丽,张海娇,等.随机利率下增额两全保险[J].大连理工大学学报,2010,50(5):827-830.
[13] 柳扬,洪宇,王丽燕.一个随机利率下的夫妻综合保险模型[J].辽宁师范大学学报(自然科学版),2014,37(4):461-468.
[14] Gary Parker. Limiting distribution of the present value of a portfolio[J]. ASTIN Bulletin, 1994,24(1):47-60.
相似文献/References:
[1]金艳,洪义成,孙婷婷,等.一类联合两全保险模型的准备金计算方法[J].延边大学学报(自然科学版),2016,42(04):281.
JIN Yan,HONG Yicheng,SUN Tingting,et al.The calculation method of reserves for a kind of Combined insurance model[J].Journal of Yanbian University,2016,42(04):281.
备注/Memo
通信作者: 姜今锡(1959—),男,博士,教授,研究方向为概率统计、最优化理论.