XU Jianing,GONG Xue,WU Fan,et al.Existence of solutions for a class of q -symmetric difference equation two points boundary value problem[J].Journal of Yanbian University,2015,41(03):189-195.
一类二阶q-对称差分方程两点边值问题解的存在性
- Title:
- Existence of solutions for a class of q -symmetric difference equation two points boundary value problem
- Keywords:
- q-symmetric difference equation; boundary value problem; fixed point; superlinear and sublinear
- 分类号:
- O175
- 文献标志码:
- A
- 摘要:
- 研究了一类二阶q-对称差分方程两点边值问题解的存在性.首先,利用Bananch空间压缩映像原理获得了解的存在唯一性结果; 其次,在一定的边界条件下,通过假设非线性项具有超线性和次线性性,建立了该问题存在正解的充分性条件.
- Abstract:
- We considered the existence of solutions for a class of the two points boundary value problem of q-symmetric difference equation. First, we obtained the existence and uniqueness of solutions by using the generalized Banach contraction principle. Then under some boundary value conditions, sufficient conditions of existence of positive solutions are established in both the superlinear and sublinear cases.
参考文献/References:
[1] El-Shabed M, Hassan H A. Positive solutions of q-difference equation[J]. Proc Amer Math Soc, 2010,138:1733-1738.
[2] Yang Wengui. Anti-periodic boundary value problems involving nonlinear fractional q-difference equations[J]. Malaya Journal of Matematik, 2013,4(1):107-114.
[3] Jackson F H. On q-funtions and a certain difference operator[J]. Trans Roy Soc Edin, 1908,46:253-281.
[4] Jackson F H. On q-definite integrals[J]. Quart J Pure and Appl Math, 1910,41:193-203.
[5] Strominger A. Information in black hole radiation[J]. Phys Rer Lett, 1993,71:3743-3746.
[6] Youm D. q-Deformed conformal quantum mechanics[J]. Phys Rev D, 2000,62:095009.
[7] Lavagno A, Swamy N P. q-Deformed structures and nonextensive statistics: a comparative study[J]. Physica A: Statistical Mechanics & Its Applications, 2002,305(1):310-315.
[8] Boole G. Calculus of Finite Differences[M]. New York: Chelsea Publishing Company, 1957.
[9] Ernst T. The different tongues of q-calculus[J]. Proc Est Acad Sci, 2008,57(2):8199.
[10] Kac V, Cheung P. Quantum Calculus[M]. New York: Springer, 2002.
[11] Koekock R, Lesky P A, Swarttouw R F. Hypergeometric Orthogonal Polynomials and Their q-Analogues[M]. Berlin: Springer Monographs in Mathematics, 2010.
[12] Smart D R. Fixed Point Theorems[M]. Cambridage: Cambridage University Press, 1980.
相似文献/References:
[1]孙明哲,侯成敏.一类分数阶q-差分系统边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(01):10.
SUN Mingzhe,HOU Chengmin.Existence of solutions for boundary value problems with a coupled system of fractional q -differences[J].Journal of Yanbian University,2015,41(03):10.
[2]吴双,慎闯,侯成敏*.一类分数阶泛函差分边值问题解的存在性[J].延边大学学报(自然科学版),2014,40(01):11.
WU Shuang,SHEN Chuang,HOU Chengmin*.The existence of solution for a class of fractional functional difference boundary value problem[J].Journal of Yanbian University,2014,40(03):11.
[3]祝相宇,孙明哲.一类分数阶差分方程正解的存在性[J].延边大学学报(自然科学版),2014,40(01):25.
ZHU Xiangyu,SUN Mingzhe.Existence of positive solution for a class of fractional difference equations[J].Journal of Yanbian University,2014,40(03):25.
[4]孙明哲,侯成敏.一类带有参数的q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2015,41(02):124.
SUN Mingzhe,HOU Chengmin.Existence of positive solutions of q -differences equations with parameter[J].Journal of Yanbian University,2015,41(03):124.
[5]金小桢,侯成敏*.一类非线性分数阶q -对称差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2017,43(01):1.
JIN Xiaozhen,HOU Chengmin*.Existence of positive solutions for boundary value problems of a class of nonlinear fractional q -symmetry differences equation[J].Journal of Yanbian University,2017,43(03):1.
[6]董强,侯成敏*.具有p -Laplacian算子的delta-nabla分数阶
差分边值问题正解的存在性[J].延边大学学报(自然科学版),2019,45(04):283.
DONG Qiang,HOU Chengmin*.Existence of positive solutions for p -Laplacian fractional differenceinvolving the discrete delta-nabla fractional boundary value problem[J].Journal of Yanbian University,2019,45(03):283.
[7]于鹏艳,侯成敏*.一类分数阶微分包含耦合系统边值问题解的存在性[J].延边大学学报(自然科学版),2021,47(01):1.
YU Pengyan,HOU Chengmin*.The existence of solutions for a class of coupled systems of fractional differential inclusions with coupled boundary value problems[J].Journal of Yanbian University,2021,47(03):1.
[8]于洋,葛琦.一类Caputo型分数阶微分方程边值问题多重正解存在的充分条件[J].延边大学学报(自然科学版),2023,(02):95.
YU Yang,GE Qi.Sufficient conditions for the existence of multiple positive solutions for a Caputo type fractional-order differential equation boundary value problems[J].Journal of Yanbian University,2023,(03):95.
[9]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(03):189.
备注/Memo
收稿日期: 2015-06-07*通信作者: 侯成敏(1963—),女,教授,研究方向为微分方程与离散动力系统.