WANG Tianjiao,NAN Hua*.Construction of mutually unbiased maximally entangled bases in quantum system C2C4[J].Journal of Yanbian University,2015,41(02):132-135.
C2C4中无偏的最大纠缠基的构造
- Title:
- Construction of mutually unbiased maximally entangled bases in quantum system C2C4
- 分类号:
- O177.3
- 文献标志码:
- A
- 摘要:
- 在两体空间C2C4上利用Pauli矩阵研究了最大纠缠基的具体形式,并给出了在C2C4系统中构造无偏基的方法以及充要条件.另外,利用一个特殊的过渡矩阵A,构造出了5组彼此无偏的最大纠缠基.
- Abstract:
- Using the Pauli matrices, the explicit construction of maximally entangled bases in the bipartite quantum system C2C4 is studied in this paper. A method of constructing mutually unbiased maximally entangled bases in C2C4 is provided, and the necessary and sufficient conditions are given. Moreover, utilizing a special unitary matrix A, we construct five maximally entangled bases which are mutually unbiased each other.
参考文献/References:
[1] Wootters W K, Fields B D. Optimal state-determination by mutually unbiased measurements[J]. Ann Phys(NY), 1989,191(2):363-381.
[2] Adamson D B A, Steinberg A M. Improving quantum state estimation with mutually unbiased bases[J]. Phys Rev Lett, 2010,105:030406.
[3] Brierley S, Weigert S, Bengtsson I. All mutually unbiased bases in dimension two to five[J]. Quantum Inform Comput, 2010,10:803-820.
[4] Mcnulty D, Weigert S. The limited role of mutually unbiased product bases in dimension 6[J]. J Phys A: Math Theor, 2012,45(10):102001.
[5] Bennett C H, Wiesner S J. Communication via one-and two-particle operators on Einstein-Podolsky-Posen states[J]. Phys Rev Lett, 1992,69:2881-2884.
[6] Klimov A B, Sych D, Sanchez-Soto L L, et al. Mutually unbiased bases and generalized Bell states[J]. Phys Rev A, 2009,79:052101.
[7] 雷丽霞,王天娇,南华.C2C6中的最大纠缠基与无偏基[J].延边大学学报:自然科学版,2014,40(4):311-313.
[8] Caruso F, Bechmann-Pasquinucci H, Macchiavello C. Robustness of a quantum key distribution with two and three mutually unbiased bases[J]. Phys Rev A, 2005,72:032340.
[9] Ghiu Iulia. Generation of all sets of mutually unbiased bases for three-qubit systems[J]. Phys Scr, 2013,T153:014027.
[10] 杨强,陶元红,张军,等.C2C3中无偏的不可扩展的最大纠缠基[J].哈尔滨理工大学学报,2014,19(4):84-87.
[11] Nizamidin H, Ma T, Fei S M. A note on mutually unbiased unextendible maximally entangled bases in C2C3[J]. Int J Theor Phys, 2015,54:326-333.
[12] Nan H, Tao Y H, Li L S, et al. Unextendible maximally entangled bases and mutually unbiased bases inCdCd’[J]. Int J Theor Phys, 2015,54:927-932.
[13] Li Z G, Zhao M J, Fei S M, et al. Mixed maximally entangled states[J]. Quant Inf Comput, 2012,12(1/2):63-73.
相似文献/References:
[1]苑普光,张秀丽,杨潇,等.C 3C 8中不可拓展的最大纠缠基和互不偏基[J].延边大学学报(自然科学版),2014,40(03):215.
YUAN Puguang,ZHANG Xiuli,YANG Xiao,et al.Unextendible maximally entangled bases and mutually unbiased bases in C 3C 8[J].Journal of Yanbian University,2014,40(02):215.
[2]乔金兰,沈鑫,向朝参,等.不可扩展的最大纠缠基和无偏基[J].延边大学学报(自然科学版),2017,43(01):15.
QIAO Jinlan,SHEN Xin,XIANG Chaocan,et al.Unextendible maximally entangled bases and mutually unbiased bases[J].Journal of Yanbian University,2017,43(02):15.
[3]雷丽霞,王天娇,南华*.C2C6中的最大纠缠基与无偏基[J].延边大学学报(自然科学版),2014,40(04):311.
LEI Lixia,WANG Tianjiao,NAN Hua*.Maximally entangled bases and mutually unbiased bases in C2C6[J].Journal of Yanbian University,2014,40(02):311.
备注/Memo
收稿日期: 2015-03-24 基金项目: 延边大学科技发展项目(延大科合字[2013]第17号)*通信作者: 南华(1972—),女,博士,副教授,研究方向为应用泛函分析.