[1]刘春晗,王建国.四阶椭圆方程非平凡解的多重性[J].延边大学学报(自然科学版),2015,41(02):111-115.
 LIU Chunhan,WANG Jianguo.Multiplicity of nontrivial solutions for fourth-order elliptic equations[J].Journal of Yanbian University,2015,41(02):111-115.
点击复制

四阶椭圆方程非平凡解的多重性

参考文献/References:

[1] Pei R C. Nontrivial solutions for a fourth-order semilinear elliptic problem[J]. Mathematica Applicata, 2013,26(1):190-197.
[2] Wei Y H. Multiplicity results for fourth-order elliptic equations [J]. J Math Anal Appl, 2012,385:797-807.
[3] Chang K C. Infinite Dimensional Morse Theory and Multiple Solutions Problems[M]. Boston: Birkh(¨overa)auser, 1993.
[4] Liang Z P, Su J B. Multiple solutions for semilinear elliptic boundary value problems with double resonance[J]. J Math Anal Appl, 2009,354:147-158.
[5] Su J B. Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues[J]. Nonlinear Anal, 2002,48:881-895.
[6] Marino B, Enrico S. Semilinear Elliptic Equations for Beginners[M]. London: Springer-Verlag, 2011.
[7] Bartsch T, Li S J. Critical point theorem for asymptotically quadratic functionals and applications to problems with resonance[J]. Nonlinear Anal TMA, 1997,28:419-441.
[8] Robinson S, Steve B. Multiple solutions for semilinear elliptic boundary value problems at resonance[J]. Elec J Diff Equ, 1995,1995:1-14.

相似文献/References:

[1]刘春晗.一类双调和方程的非平凡解的存在性[J].延边大学学报(自然科学版),2016,42(03):203.
 LIU Chunhan.Existence of nontrivial solutions for a class of biharmonic equations[J].Journal of Yanbian University,2016,42(02):203.

备注/Memo

收稿日期: 2014-05-12 作者简介: 刘春晗(1981—),男,副教授,研究方向为非线性泛函分析及其应用.基金项目: 国家自然科学基金资助项目(10971179); 山东省高等学校科技计划项目(J12L153); 齐鲁师范学院青年教师科研基金资助项目(2014L1001)

更新日期/Last Update: 2015-05-30