文章编号: 1004-4353(2015)02-0111-05

四阶椭圆方程非平凡解的多重性

刘春晗, 王建国

(齐鲁师范学院 数学学院,山东 济南 250013)

摘要:在非共振的情况下讨论了一类不满足 Ambrosetti-Rabinowitz 型增长条件的四阶椭圆方程.首先,证明泛函 Φ 满足(PS)条件.其次,证明泛函 Φ 满足山路引理的其他条件.最后,利用 Morse 理论和山路引理获得了方程的 3 个非平凡解.

关键词:山路引理;临界群;非平凡解

中图分类号: O175.25 文献标识码: A

Multiplicity of nontrivial solutions for fourth-order elliptic equations

LIU Chunhan, WANG Jianguo

(School of Mathematics, Qilu Normal University, Jinan 250013, China)

Abstract: The fourth-order elliptic equations at no resonance are discussed without assuming Ambrosetti-Rabinowitz type growth conditions. Firstly, we prove that the functional Φ satisfies (PS) condition. Secondly, we prove that the functional Φ satisfies the other conditions of Mountain Pass Lemma. Finally, three nontrivial solutions are obtained by using Morse Theory and Mountain Pass Lemma.

Key words: Mountain Pass Lemma; critical group; nontrivial solution

0 引言

本文考虑方程

$$\begin{cases}
\Delta^2 u + b\Delta u = g(x, u), \ x \in \Omega; \\
u = \Delta u = 0, \ x \in \partial \Omega.
\end{cases}$$
(1)

其中 Δ^2 是双调和算子,b 为常数, $\Omega \subset \mathbf{R}^N$ 是有界的光滑区域,g(x,u) 在 $\overline{\Omega} \times \mathbf{R}$ 上连续. 近年来很多学者对此类问题做了研究,例如:文献[1] 的作者利用山路引理讨论了方程 $\begin{cases} \Delta^2 u = g(x,u), x \in \Omega; \\ u = \Delta u = 0, x \in \partial \Omega, \end{cases}$ 得到了方程至少存在 1 个非平凡解的结果;文献[2] 对方程(1) 进行了研究,并在以下条件下得到了方程的非平凡解: $\lim_{t \to 0} \frac{g(x,t)}{t} = \mu$, $\lim_{t \to \infty} \frac{g(x,t)}{t} = l$,对 a. e. $x \in \Omega$ 一致,并且满足 $0 \le \mu < \lambda_1(\lambda_1 - c) < l < + \infty$,其中 λ_1 是与后面给出的特征值问题(2) 相对应的特征值. 本文利用山路引理和 Morse 理论研究方程(1),获得了方程至少存在 3 个非平凡解的结果,而文献[1-2] 只得到了方程至少存在 1 个非平凡解的

收稿日期: 2014-05-12 作者简介: 刘春晗(1981—),男,副教授,研究方向为非线性泛函分析及其应用.

基金项目: 国家自然科学基金资助项目(10971179);山东省高等学校科技计划项目(J12L153);齐鲁师范学院青年教师科研基金资助项目(2014L1001)

结果,因此本文的研究拓展了文献[1-2]的研究结果.

为后续讨论需要,首先给出如下假设条件:

$$(\mathrm{H}_1) \lim_{u \to 0} \frac{g(x,u)}{u} = \alpha < \lambda_1(\lambda_1 - b), \ \lambda_k(\lambda_k - b) \leqslant \lim_{\|u\| \to \infty} \inf \frac{g(x,u)}{u} \leqslant \lim_{\|u\| \to \infty} \frac{g(x,u)}{u} \leqslant \lambda_{k+1}(\lambda_{k+1} - b),$$

对 a. e. $x \in \Omega$ 一致,其中 $\lambda_k(k \ge 2)$ 是后面给出的特征值问题(2) 相对应的特征值;

$$(H_2)$$
 若当 $\|u_n\| \to \infty$ 时,有 $\frac{\|u_n^k\|}{\|u_n\|} \to 1$,则存在 σ_1 , $N_1 > 0$ 使得

$$\int_{0}^{\infty} (g(x,u_{n}) - \lambda_{k}(\lambda_{k} - b)u_{n})u_{n}^{k} dx \geqslant \sigma_{1}, n \geqslant N_{1}, x \in \Omega;$$

$$(H_3)$$
 若当 $\|u_n\| \to \infty$ 时,有 $\frac{\|u_n^{k+1}\|}{\|u_n\|} \to 1$,则存在 σ_2 , $N_2 > 0$ 使得

$$\int_{\Omega} (\lambda_{k+1}(\lambda_{k+1}-b)u_n-g(x,u_n))u_n^{k+1} dx \geqslant \sigma_2, \ n \geqslant N_2, \ x \in \Omega;$$

 (H_4) $g(x,0) = 0, \forall x \in \Omega.$

注 1 容易看出条件(H_1) 要弱于文献[2] 中的条件(H_2).

首先考虑特征值问题

$$\begin{cases}
-\Delta u = \lambda u, & x \in \Omega; \\
u = 0, & x \in \partial \Omega.
\end{cases}$$
(2)

记 $\lambda_k(k \in \mathbb{N})$ 与 $\varphi_k(k \in \mathbb{N})$ 分别是特征值问题(2) 的特征值及相应的特征函数,且满足 $0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_k \to +\infty$,第一特征向量 $\varphi_1 > 0$,对 $x \in \Omega$. 下面考虑特征值问题

$$\begin{cases}
\Delta^2 u + b\Delta u = \Lambda u, \ x \in \Omega; \\
u = \Delta u = 0, \ x \in \partial \Omega.
\end{cases}$$
(3)

易得出 $\lambda_k(\lambda_k-b)(k\in\mathbb{N})$ 以及特征向量 $\varphi_k(k\in\mathbb{N})$ 满足特征值问题(3),即 $\lambda_k(\lambda_k-b)$ 是问题(3) 的特征值.

假设 $b < \lambda_1$,定义空间 H 中的范数为 $\|u\|^2 = \int_{\Omega} (|\Delta u|^2 - b |\nabla u|^2) dx$. 可以证明 $\|\cdot\|$ 是空间 H 中的一个等价范数,并且 Pioncaré 不等式成立,即

$$||u||^2 \geqslant \lambda_1(\lambda_1 - b) ||u||_{L^2}^2,$$
 (4)

对任意的 $u \in H$. 空间 H 可分解为 $H = E_i^- \oplus E^i \oplus E^{i+1} \oplus E_i^+$,其中 $E^i = \ker(\Delta^2 + b\Delta - \lambda_i(\lambda_i - b))$, $E_i^- = \oplus E^j$,并且对任意的 $u \in H$,有 $u = u^- + u^i + u^{i+1} + u^+$, $u^\pm \in E_i^\pm$, $u^i \in E^i$, $u^{i+1} \in E^{i+1}$.

问题(1) 的弱解就是泛函 $\Phi(u) = \frac{1}{2} \int_{\Omega} (|\Delta u|^2 - b |\nabla u|^2) dx - \int_{\Omega} G(x, u) dx, u \in H$ 的临界点,其

中
$$G(x,u) = \int_0^u g(x,t) dt$$
. 对于任意的 $\varphi \in H$, 有 $\langle \Phi'(u), \varphi \rangle = \int_{\Omega} (\Delta u \Delta \varphi - b \nabla u \nabla \varphi) dx - \int_{\Omega} g(x,u) \varphi dx$.

引入下面的截断问题:

$$\begin{cases}
\Delta^2 u + b\Delta u = g^+(x, u), & x \in \Omega; \\
u = \Delta u = 0, & x \in \partial \Omega.
\end{cases}$$
(5)

其中 $g^+(x,u) =$ $\begin{cases} g(x,u), & u \ge 0; \\ 0, & u < 0. \end{cases}$ 定义问题(5) 的能量泛函 $\Phi^+: H \to \mathbf{R}$ 为

$$\Phi^{+}(u) = \frac{1}{2} \int_{\Omega} (|\Delta u|^{2} - b |\nabla u|^{2}) dx - \int_{\Omega} G^{+}(x, u) dx, u \in H,$$

其中 $G^+(x,u) = \int_0^u g^+(x,t) dt$. 可以证明 $\Phi^+(u) \in C^1(H,\mathbf{R})$. 如果 $u \neq \Phi^+(u)$ 的临界点,则 $u \neq \Phi$ [5]

的一个弱解,并且可证 $u \ge 0$ a. e. $x \in \Omega$, 而且 u 也是方程(1) 的 1 个正解,即 $\Phi(u) = \Phi^+(u)$.

类似地,可以定义

$$\begin{cases}
\Delta^2 u + b\Delta u = g^-(x, u), & x \in \Omega; \\
u = \Delta u = 0, & x \in \partial \Omega.
\end{cases}$$
(6)

其中 $g^{-}(x,u) = \begin{cases} g(x,u), & u \leq 0; \\ 0, & u > 0. \end{cases}$ 定义问题(6) 的能量泛函为 $\Phi^{-}(u) = \frac{1}{2} \int_{\Omega} (|\Delta u|^{2} - b |\nabla u|^{2}) dx - dx$

 $\int_{\Omega} G^{-}(x,u) dx, u \in H, 其中 G^{-}(x,u) = \int_{0}^{u} g^{-}(x,t) dt.$ 可以证明 $\Phi^{-}(u) \in C^{1}(H,\mathbf{R})$. 如果 $u \not\in \Phi^{-}(u)$ 的非平凡临界点,则 u 也是方程(1) 的 1 个负解,即 $\Phi(u) = \Phi^{-}(u)$.

以下给出临界群和 Morse 理论的相关知识[3-4].

设 H 是 Hilbert 空间, 泛函 $\Phi(u) \in C^2(H, \mathbf{R})$ 满足(PS) 条件或(C) 条件,用 $H_q(H, Y)$ 表示具有整系数的 q 阶奇异相对同调群. 设 ν_0 是 Φ 的孤立临界点,且 $\Phi(\nu_0) = c \in \mathbf{R}$. 记 $\Phi = \{\nu \in H \mid \Phi(\nu) \leq c\}$, $K = \{\nu \in H \mid \Phi'(\nu) = \theta\}$. 称群 $C_q(\Phi, \nu) = H_q(\Phi^c, \Phi^c \setminus \{\nu_0\})$, $q \in \mathbf{Z}$ 为 Φ 在 ν_0 处的 q 阶临界群. 若设 K 是 有限集,称 $C_q(\Phi, \infty) = H_q(H, \Phi^c)$, $q \in \mathbf{Z}$ 为 Φ 在 无 穷远点处的临界群,其中 $c < \inf \Phi(K)$.

定义 $\mathbf{1}^{[3]}$ 设 $\Phi \in C^1(E, \mathbf{R})$, 称 Φ 关于每一个 $c \in \mathbf{R}$ 满足(PS)。条件,若满足条件 $\Phi(u_n) \to c$, $\Phi'(u_n) \to 0$ ($n \to \infty$) 的任意数列 $\{u_n\}$ 均有收敛子列;称 Φ 满足(PS) 条件,如果称 Φ 关于每一个 $c \in \mathbf{R}$ 满足(PS)。条件,

定义 $2^{[3]}$ 设 $\Phi \in C^1(E, \mathbf{R})$,称 Φ 关于每一个 $c \in \mathbf{R}$ 满足(C)。条件,若满足条件 $\Phi(u_n) \to c$,(1+ $\|u_n\|$) $\Phi'(u_n) \to 0$ ($n \to \infty$) 的任意数列 $\{u_n\}$ 均有收敛子列;称 Φ 满足(C)条件,如果称 Φ 关于每一个 $c \in \mathbf{R}$ 满足(C)。条件.

引理 1 如果 $g(x,u) \in \overline{\Omega} \times \mathbf{R}$ 满足假设条件(H_1),且对于任意的 u < 0,有 g(x,u) = 0,则泛函 $\Phi(u)$ 满足(PS) 条件.

引理1的证明过程类似于文献[5]中Lemma3.2的证明,故略.同理可得:

引理 2 如果 $g(x,u) \in \overline{\Omega} \times \mathbf{R}$ 满足假设条件 (H_1) ,且对于任意的 u > 0,有 g(x,u) = 0,则泛函 $\Phi(u)$ 满足(PS) 条件.

引理 3 设 $H = H^+ \oplus H^-$, $H^+ = E_k^- \oplus E^k$, $H^- = E^{k+1} \oplus E_k^+$, 则:

 $\|u\|^2 \leqslant \lambda_k (\lambda_k - b) \|u\|_2^2, \forall u \in H^+; \|u\|^2 \geqslant \lambda_{k+1} (\lambda_{k+1} - b) \|u\|_2^2, \forall u \in H^-.$

引理3的证明过程类似于文献[6]中Lemma2.5的证明,故略.

定理 $\mathbf{1}^{[3]}$ (山路引理) 假设 $\Phi \in C^1(E, \mathbf{R})$ 满足 $\max\{\Phi(0), \Phi(1)\} \leqslant \alpha < \beta \leqslant \inf_{\|\mathbf{u}\| = \rho} \Phi(\mathbf{u}),$ 对某一 $\alpha_0 < \beta_0, \rho > 0$ 且 $u_1 \in E$, $\|\mathbf{u}_1\| > \rho$. 令 $\Gamma = \{\gamma \in C([0,1], E) : \gamma(0) = 0, \gamma(1) = u_1\}$, 且 $c = \inf_{\gamma \in \Gamma} \max_{\tau \in [0,1]} \Phi(\gamma(\tau))$, 则 $c \geqslant \beta_0 > 0$. 若 Φ 满足 (PS) 条件,则 $c \notin \Phi$ 的临界点.

注 2 在定理 1 中, 若把条件换成 Φ 满足(C)条件, 结论依然成立.

定理 $2^{[7]}$ 设 $H = H^+ \oplus H^-$,若 Φ 在 H^+ 上是下方有界,且当 $\|u\| \to \infty$ 时, $\Phi(u) \to -\infty$, $\forall u \in H^-$, $k = \dim H^- < \infty$,则 $C_k(\Phi, \infty) \not\cong 0$.

1 主要结果及其证明

定理 3 如果 g(x,u) 满足假设条件 (H_1) — (H_4) ,且 $b < \lambda_1$,则方程(1) 至少存在 3 个非平凡解. 证明 首先证明泛函 Φ 满足(C) 条件,为此只需证明 $\{u_n\}$ 在 H 上是有界即可. 假设 u_n 満足 $(1+\|u_n\|)\Phi'(u_n) \to 0$, $\Phi(u_n) \to c$. (7)

设 $\|u_n\| \to +\infty$,令 $w_n = \frac{u_n}{\|u_n\|}$,则 $\|w_n\| = 1$,因此,存在 $\{w_n\}$ 的子列(可仍记为 $\{w_n\}$) 及 $w \in H$ 满足

 $w_n \rightharpoonup w \mp H$, $w_n \rightarrow w \mp L^2(\Omega)$, $w_n \rightarrow w$ a. e. $x \in \Omega$.

(8)

由 (H_1) 可知,存在常数 C 及 R_1 使得

$$|g(x,t)| \leqslant C(1+|t|), |t| \geqslant R_1, x \in \Omega.$$
 (9)

从而,对于充分大的n,有 $\frac{|g(x,u_n)|}{\|u_n\|} \leqslant C(1+|w_n|)$ a. e. $x \in \Omega$. 于是, $\{|g(x,u_n)|/\|u_n\|\}$ 在 $L^2(\Omega)$ 上有界.

由式(7) 可得,对任意的 $\varphi \in H$,有

$$\left| \int_{\Omega} (\Delta w_n \Delta \varphi - b \nabla w_n \nabla \varphi) \, \mathrm{d}x - \int_{\Omega} \frac{g(x, u_n)}{\|u_n\|} \varphi \, \mathrm{d}x \right| = \frac{\left| \langle \Phi'(u_n), \varphi \rangle \right|}{\|u_n\|} \leqslant \frac{1}{\|u_n\|} \|\Phi'(u_n)\| \|\varphi\| \to 0.$$

$$(10)$$

由式(8)—(10) 及(H_1) 可知,存在 $r \in L^2(\Omega)$ 满足 $\lambda_k(\lambda_k - b) \leqslant r(x) \leqslant \lambda_{k+1}(\lambda_{k+1} - b)$ a. e. $x \in \Omega$,使得在 H 中有 $\frac{|g(x,u_n)|}{\|u_n\|}$ rw. 所以,对于任意的 $\varphi \in H$,有

$$\int_{\Omega} (\Delta w \Delta \varphi - b \nabla w \nabla \varphi) \, \mathrm{d}x = \int_{\Omega} r(x) w \varphi \, \mathrm{d}x, \qquad (11)$$

因此 $w \in H$ 是方程 $\Delta^2 w + b \Delta w = rw$ 的弱解.

由最大值原理及唯一连续性性质可得 $r = \lambda_k(\lambda_k - b)$, $w \in E^k$ 或者 $r = \lambda_{k+1}(\lambda_{k+1} - b)$, $w \in E^{k+1}$, 并且 $\frac{\|u_n^k\|}{\|u_n\|} \to 1$, 或者 $\frac{\|u_n^{k+1}\|}{\|u_n\|} \to 1$. 由式(7) 可得 $\int_{\Omega} (g(x,u_n) - \lambda_k(\lambda_k - b)u_n)u_n^k dx = -(\Phi'(u_n), u_n^k) \leqslant 0$

 $\|u_n\|\|\Phi'(u_n)\| \to 0$, $n \to \infty$, 这与 (H_2) 矛盾. 同理可得 $\int_{\Omega} (\lambda_{k+1}(\lambda_{k+1} - b)u_n - g(x, u_n))u_n^k dx \to 0$, $n \to \infty$

 ∞ ,这与 (H_3) 矛盾,从而 $\{u_n\}$ 在H上是有界的.于是 $\{u_n\}$ 在H中存在弱收敛的子列,不妨仍记为 $\{u_n\}$,

弱极限可记为 u. 容易看出在 $L^2(\Omega)$ 中 $u_n \to u$, 再由式(7) 可得 $\|u_n - u_m\| = \int_{\Omega} g(x, u_n - u_m)(u_n - u_m) dx + o(1) \|u_n - u_m\|$. 当 $n, m \to \infty$ 时,有 $\left|\int_{\Omega} g(x, u_n - u_m)(u_n - u_m) dx\right| \leqslant |g(x, u_n - u_m)|_2 |u_n - u_m|_2$,因

此在 $H \vdash \{u_n\}$ 强收敛到 u, 即 Φ 满足(C) 条件.

设 $H = H^+ \oplus H^-$, $H^+ = E_k^- \oplus E^k$, $H^- = E^{k+1} \oplus E_k^+$. 利用引理 3,类似于文献[8] 中引理 1 的证明方法可证得泛函 Φ 在 H^- 上是下方有界的,在 H^+ 上反强制,即当 $\|u_n\| \to +\infty$,有 $\Phi(u) \to -\infty$, $\forall u \in H^+$. 再由定理 2 可知

$$c_{\mu}(\Phi,\infty) \ncong 0, \ \mu = \dim H^{+}. \tag{12}$$

另外,由于 $\alpha < \lambda_1(\lambda_1 - b)$, θ 是 Φ 的局部最小值点,所以

$$c_q(\Phi,0) = \delta_{q0} Z. \tag{13}$$

由式(12)和(13)可知, Φ 有非平凡临界点 u_1 满足

$$c_{\mu}(\boldsymbol{\Phi}, \boldsymbol{u}_1) \not\cong 0. \tag{14}$$

由引理 1 和引理 2 可知 Φ^+ (u) 和 Φ^- (u) 都满足(PS) 条件. 下面证明 Φ^+ (u) 满足山路引理的其他条件,对于 Φ^- (u) 可类似地得到证明. 由假设条件(H_1)—(H_4) 可知,对 $\forall \epsilon > 0$,选取 $\sigma \in (2,\sigma^*)$,则

存在
$$C_1 > 0$$
,使得 $G^+(x,u) \leq \frac{1}{2}(\alpha + \varepsilon)u^2 + C_1u^a$,这里 $\sigma^* = \begin{cases} \frac{2N}{N-2}, & N > 2; \\ +\infty, & N \leq 2. \end{cases}$ 取充分小的 $\varepsilon > 0$,使

得 $\alpha + \varepsilon < \lambda_1(\lambda_1 - b)$, 由 Pioncaré 不等式和 Sobolev 嵌入定理,有

$$\Phi^{+}(u) = \frac{1}{2} \int_{\Omega} (|\Delta u|^{2} - b |\nabla u|^{2}) dx - \int_{\Omega} G^{+}(x, u) dx \geqslant \frac{1}{2} ||u||^{2} - \frac{\alpha + \epsilon}{2} |u|^{\frac{2}{2}} - C_{1} |u|^{\frac{\sigma}{\sigma}} \geqslant \frac{1}{2} (1 - \frac{\alpha + \epsilon}{\lambda_{1}(\lambda_{1} - b)}) ||u||^{2} - C_{2} ||u||^{\sigma}.$$

取充分小的 $\|u\| = r > 0$,可得 $\Phi^+|_{\partial B_r} \geqslant a > 0$,其中 $B_r = \{u \in H: \|u\| \leqslant r\}$.由(H₁)可知,对于 $\forall \epsilon > 0$,在 $f \in C > 0$,据得 $C \in C$,是 $f \in C$ 。是 $f \in C$,是 $f \in C$,是 $f \in C$,是 $f \in C$ 。是 $f \in C$ 。是

$$0$$
,存在 $C_3 > 0$,使得 $G^+(x,u) \geqslant \frac{1}{2} (\lambda_k(\lambda_k - b) - \varepsilon) u^2 - C_3$. 取 $\varepsilon > 0$ 充分小,使得 $\lambda_k(\lambda_k - b) - \varepsilon > 0$

 $\lambda_{1}(\lambda_{1}-b), \text{ QL} \Phi^{+}(u) = \frac{1}{2} \int_{\Omega} (|\Delta u|^{2} - b |\nabla u|^{2}) dx - \int_{\Omega} G^{+}(x,u) dx \leq \frac{1}{2} \|u\|^{2} - \frac{\lambda_{k}(\lambda_{k}-b) - \varepsilon}{2} |u|^{2} + \frac{\lambda_{k}(\lambda_{k}-b) - \varepsilon}{2} |u|^{2} +$

$$C_3 \mid \Omega \mid$$
. 设 $u = t\varphi_1$, 这里 φ_1 是特征值 λ_1 的特征函数, $\|\varphi_1\| = 1$,有
$$\Phi(t\varphi_1) \leqslant \frac{1}{2} (1 - \frac{\lambda_k(\lambda_k - b) - \epsilon}{\lambda_1(\lambda_1 - b)}) t^2 \|\varphi_1\|^2 + C_3 |\Omega| \to -\infty, t \to \infty,$$

则存在某一个 $e \in H$, $\|e\| > r$,使得 $\Phi^+(e) \le 0$. 综上可知, $\Phi^+(u)$ 满足定理 1 的所有条件,故 $\Phi^+(u)$ 存在非平凡的临界点 u_2 ,且 $u_2 > 0$. 利用文献[3] 中的结论可得

$$C_q(\Phi, u_2) \cong \delta_{q_1} Z. \tag{15}$$

类似地,可以证明 $\Phi^-(u)$ 满足定理 1 的所有条件,从而获得 Φ 的另一个负的临界点 u_s ,且满足

$$C_q(\Phi, u_3) = \delta_{a1} Z. \tag{16}$$

最后,由式(14)—(16) 和 $\mu \ge k > 2$,知 u_1, u_2, u_3 是方程(1)的 3个不同的非平凡解.

参考文献:

- [1] Pei R C. Nontrivial solutions for a fourth-order semilinear elliptic problem[J]. Mathematica Applicata, 2013,26 (1):190-197.
- [2] Wei Y H. Multiplicity results for fourth-order elliptic equations [J]. J Math Anal Appl, 2012,385,797-807.
- [3] Chang K C. Infinite Dimensional Morse Theory and Multiple Solutions Problems[M]. Boston: Birkhaauser, 1993.
- [4] Liang Z P, Su J B. Multiple solutions for semilinear elliptic boundary value problems with double resonance[J]. J Math Anal Appl, 2009, 354;147-158.
- [5] Su J B. Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues[J]. Nonlinear Anal, 2002,48:881-895.
- [6] Marino B, Enrico S. Semilinear Elliptic Equations for Beginners M. London: Springer-Verlag, 2011.
- [7] Bartsch T, Li S J. Critical point theorem for asymptotically quadratic functionals and applications to problems with resonance[J]. Nonlinear Anal TMA, 1997,28:419-441.
- [8] Robinson S, Steve B. Multiple solutions for semilinear elliptic boundary value problems at resonance[J]. Elec J Diff Equ, 1995,1995;1-14.