[1]窦丽萍,何延生.Logistic反应扩散方程的周期波解[J].延边大学学报(自然科学版),2014,40(04):283-289.
 DOU Liping,HE Yansheng*.Periodic wave solutions of Logistic reaction diffusion equation[J].Journal of Yanbian University,2014,40(04):283-289.
点击复制

Logistic反应扩散方程的周期波解

参考文献/References:

[1] Bell J, Cosner C. Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons[J]. Quart Appl Math, 1984,42:1-14.
[2] Britton N F. Traveling wave front solutions of a differential-difference equation arising in the modeling of myelinated nerve axon[J]. Ordinary and Partial Differential Equations, Lecture Notes in Mathematics, 2006,1151(1985):77-89.
[3] Chi H, Bell J, Hassard B. Numerical solutions of a nonlinear advanced-delay differential equation from nerve condition theory[J]. J Math Biol, 1986,24:583-601.
[4] Shao Yuanhuang, Sui Suncheng. Existence of periodic traveling wave solutions of non-autonomous reaction-diffusion equations with lambda-omega type[J]. J Math Anal Appl, 2014,409:607-613.
[5] Zinner B. Existence of traveling wavefront solutions for the discrete Nagumo equation[J]. J Differ Eq, 1992,96:1-27.
[6] Fu S C, Guo J S, Shieh S Y. Traveling wave solutions for some discrete quasilinear parabolic equations[J]. Nonlinear Anal, 2002,48:1137-1149.
[7] Wu J, Zou X. Asymptotic and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations[J]. J Differ Eq, 1997,135:315-357.
[8] He Yansheng, Hou Chengmin. Traveling wave for 2-1 dimension lattice difference equations[J]. Chinese Quarterly Journal of Mathematics, 2013,28(2):214-223.

备注/Memo

收稿日期: 2014-08-10*通信作者: 何延生(1962—),男,副教授,研究方向为微差分方程理论及其应用.

更新日期/Last Update: 2014-12-20