ZHENG Weiqiang,ZHOU Xiaoyan,HU Ping,et al.Travelling wave solutions to a kind of reaction-diffusion equations[J].Journal of Yanbian University,2014,40(03):203-206.
一类反应扩散方程的行波解
- Title:
- Travelling wave solutions to a kind of reaction-diffusion equations
- Keywords:
- reaction-diffusion equations; travelling wave solutions; equilibrium point; heteroclinic orbit
- 分类号:
- O415
- 文献标志码:
- A
- 摘要:
- 用试探函数法求解得到一类反应扩散方程行波解的通解,得到了连接不同平衡点的异宿轨道,并且验证了当参数m=1时解的正确性; 因此,可以把该解推广到高维的反应扩散方程中.
- Abstract:
- A method to solve nonlinear partial differential equations is introduced. By using the method, we obtained the general solutions of reaction-diffusion equations, and obtained the heteroclinic orbit of connecting to a different equilibrium point. The results show that it is right when the parameter m=1, so the method can also be used to solve high-dimensional nonlinear reaction-diffusion equations.
参考文献/References:
[1] Wang M L. Solitary wave solution for Boussinesq equation[J]. Physics Letters A, 1995,199:162-172.
[2] Parkes E J, Duffy B R. Travelling solitary wave solution to a compound Kdv-Burgers equation[J]. Physics Letters A, 1997,229:217-220.
[3] Fan E C, Zhang H Q. A note on homogeneous balance method[J]. Phys Lett A, 1998,246:403-406.
[4] Yan C T. A simple transformation for nonlinear waves[J]. Physics Letters A, 1996,224:77-84.
[5] Xie Y X, Tang J S. New solitary wave solutions to the Kdv-Burgers equation[J]. International Journal of Theoretical Physics, 2005,44(3):293-301.
[6] Xie Y X, Tang J S. A unified approach in seeking the solitary wave solutions to sine-Gordon type equations[J]. Chinese Physics, 2005,14(7):1303-1306.
[7] 关伟,张鸿庆.求解非线性方程的双函数法[J].高校应用数学学报:A辑,2001,16(2):163-168.
[8] 刘式适,刘式达.物理学中的非线性方程[M].北京:北京大学出版社,2000:195-200.
[9] 王明新.非线性抛物方程[M].北京:科学出版社,1993:139-180.
相似文献/References:
[1]叶飞筠,刘小华,曾职云.广义三阶非线性薛定谔方程的行波解[J].延边大学学报(自然科学版),2022,(04):312.
YE Feiyun,LIU Xiaohua,ZENG Zhiyun.Traveling wave solutions of generalized third - order nonlinear Schrdinger equations[J].Journal of Yanbian University,2022,(03):312.
[2]朱引,刘小华.Kadomtsov - Petviashvili - Benjamin - Bona - Mahony方程的行波解[J].延边大学学报(自然科学版),2023,(03):250.
ZHU Yin,LIU Xiaohua.Traveling wave solutions of the Kadomtsov - Petviashvili - Benjamin - Bona - Mahony equation[J].Journal of Yanbian University,2023,(03):250.
备注/Memo
收稿日期: 2014-06-05作者简介: 郑伟强(1953—),男,副教授,研究方向为计算物理.