WU Shuang,SHEN Chuang,HOU Chengmin*.The existence of solution for a class of fractional functional difference boundary value problem[J].Journal of Yanbian University,2014,40(01):11-14.
一类分数阶泛函差分边值问题解的存在性
- Title:
- The existence of solution for a class of fractional functional difference boundary value problem
- 分类号:
- O175
- 文献标志码:
- A
- 摘要:
- 研究了一类离散分数阶边值问题解的存在性.首先给出了该问题的解的表达式,再根据解的表达式定义一个算子,通过运用已知定理证明了此类边值问题解的存在性,然后将所得结论推广到高阶分数阶方程边值问题.
- Abstract:
- We consider the existence of the solution for a class of discrete fractional boundary value problem. First we present the expressions of its solutions, and we define an operator by using the expression. Next we prove the existence of solutions for such boundary value problems by applying given theorem, and generalize the conclusion to higher order boundary value problems.
参考文献/References:
[1] Atici F M, Eloe P W. Initial value problems in discrete fractional calculus[J]. Proc Amer Math Soc, 2009,137(3):981-989.
[2] Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. J Difference Equ Appl, 2011,17(4):445-456.
[3] Goodrich C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions[J]. J Comput Math Appl, 2011,61(21):191-202.
[4] Li W T, Niu M F, Sun J P. Existence of positive solutions of boundary value problems for second-order nonlinear difference systems[J]. Appl Math Comp, 2004,152:779-798.
[5] Sun J P, Li W T. Existence of positive solutions of boundary value problems for a discrete difference system[J]. Appl Math Comp, 2004,156:857-870.
[6] Chen F Q. Existence of solutions for mixed monotone impulsive volterra integral equations in Banach spaces[J]. Acta Math Sci, 1998,18:371-378.
[7] Chen F Q. Extreme solutions of initial value problems for nonlinear second order integro differential equations in Banach spaces[J]. Acta Math Appl Sinica, 2001,17:289-298.
[8] Atici F M, Eloe P W. Initial value problems in discrete fractional calculus[J]. Proc Amer Math Soc, 2009,137:981-989.
[9] Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations[M]. New York: Wiley, 1993.
[10] Atici F M, Eloe P W. A transform method in discrete fractional calculus[J]. Int J Difference Equ, 2007,2(2):165-176.
相似文献/References:
[1]孙明哲,侯成敏.一类分数阶q-差分系统边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(01):10.
SUN Mingzhe,HOU Chengmin.Existence of solutions for boundary value problems with a coupled system of fractional q -differences[J].Journal of Yanbian University,2015,41(01):10.
[2]祝相宇,孙明哲.一类分数阶差分方程正解的存在性[J].延边大学学报(自然科学版),2014,40(01):25.
ZHU Xiangyu,SUN Mingzhe.Existence of positive solution for a class of fractional difference equations[J].Journal of Yanbian University,2014,40(01):25.
[3]孙明哲,侯成敏.一类带有参数的q -差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2015,41(02):124.
SUN Mingzhe,HOU Chengmin.Existence of positive solutions of q -differences equations with parameter[J].Journal of Yanbian University,2015,41(01):124.
[4]徐佳宁,龚学,吴凡,等.一类二阶q-对称差分方程两点边值问题解的存在性[J].延边大学学报(自然科学版),2015,41(03):189.
XU Jianing,GONG Xue,WU Fan,et al.Existence of solutions for a class of q -symmetric difference equation two points boundary value problem[J].Journal of Yanbian University,2015,41(01):189.
[5]金小桢,侯成敏*.一类非线性分数阶q -对称差分方程边值问题正解的存在性[J].延边大学学报(自然科学版),2017,43(01):1.
JIN Xiaozhen,HOU Chengmin*.Existence of positive solutions for boundary value problems of a class of nonlinear fractional q -symmetry differences equation[J].Journal of Yanbian University,2017,43(01):1.
[6]董强,侯成敏*.具有p -Laplacian算子的delta-nabla分数阶
差分边值问题正解的存在性[J].延边大学学报(自然科学版),2019,45(04):283.
DONG Qiang,HOU Chengmin*.Existence of positive solutions for p -Laplacian fractional differenceinvolving the discrete delta-nabla fractional boundary value problem[J].Journal of Yanbian University,2019,45(01):283.
[7]于鹏艳,侯成敏*.一类分数阶微分包含耦合系统边值问题解的存在性[J].延边大学学报(自然科学版),2021,47(01):1.
YU Pengyan,HOU Chengmin*.The existence of solutions for a class of coupled systems of fractional differential inclusions with coupled boundary value problems[J].Journal of Yanbian University,2021,47(01):1.
[8]于洋,葛琦.一类Caputo型分数阶微分方程边值问题多重正解存在的充分条件[J].延边大学学报(自然科学版),2023,(02):95.
YU Yang,GE Qi.Sufficient conditions for the existence of multiple positive solutions for a Caputo type fractional-order differential equation boundary value problems[J].Journal of Yanbian University,2023,(01):95.
[9]葛月英,葛琦.一类Hadamard型分数阶微分方程边值问题的Lyapunov不等式及其解的存在性[J].延边大学学报(自然科学版),2023,(03):189.
GE Yueying,GE Qi.Existence of Lyapunov inequality and its solutions for a class of boundary value problems for fractional differential equations of Hardmard type[J].Journal of Yanbian University,2023,(01):189.
备注/Memo
收稿日期: 2013-04-26 基金项目: 国家自然科学基金资助项目(11161049)*通信作者: 侯成敏(1963—),女,教授,研究方向为微分方程与离散动力系统.