|本期目录/Table of Contents|

[1]王薇,何延生*.周期脉冲效应下一个捕食-食铒系统的灭绝与持续生存[J].延边大学学报(自然科学版),2013,39(03):172-178.
 WANG Wei,HE Yansheng*.Extinction and permanence of a predator-prey system with periodic impulsive effect[J].Journal of Yanbian University,2013,39(03):172-178.
点击复制

周期脉冲效应下一个捕食-食铒系统的灭绝与持续生存()
分享到:

《延边大学学报(自然科学版)》[ISSN:1004-4353/CN:22-1191/N]

卷:
第39卷
期数:
2013年03期
页码:
172-178
栏目:
出版日期:
2013-09-30

文章信息/Info

Title:
Extinction and permanence of a predator-prey system with periodic impulsive effect
文章编号:
1004-4353(2013)03-0172-07
作者:
王薇 何延生*
延边大学理学院 数学系, 吉林 延吉 133002
Author(s):
WANG Wei HE Yansheng*
Department of Mathematics, College of Science, Yanbian University, Yanji 133002, China
关键词:
灭绝 持续生存 脉冲 比较定理
Keywords:
extinction permanence impulsive comparison theorem
分类号:
O175.12
DOI:
-
文献标志码:
A
摘要:
研究在周期脉冲效应下的一个捕食-食铒系统.首先给出两个食饵种群灭绝的相关解的存在性和全局吸引性,然后利用比较原理及Lyapunov函数建立该系统的灭绝和持续生存的充分性条件,最后利用微分不等式及其分析方法给出充分性的证明.
Abstract:
A predator-prey system with periodic impulsive effect is discussed. First we assume the existence and global attractability of the relevant solution of two prey species extinction, and then establish the sufficient conditions of both extinction and continuous existence of this system using the comparison principle and a Lyapunov function. And finally, we prove the sufficiency of it using differential inequality and its analysis methods.

参考文献/References:

[1] Cushing J M. Two species competition in a periodic envifonment[J]. Joumal of Mathematical Biology, 1980,10:348-400.
[2] 庞国平.具有脉冲效应的两食饵一捕食者系统分析[J].数学的实践与认识,2007,37(16):129-133.
[3] Chen Lansun. Mathematical Models and Methods in Ecology[M]. Beijing: Chinese Science and Technology Publishing House, 1988:129-138.
[4] Montes de Oca F, Zeeman M L. Extinction in nonautonomous competitive Lotka-volterra system[J]. Proc Am Math Soc, 1996,124:3677-3687.
[5] Ahmad S, Montes de Oca F. Extinction in nonautonomous T-periodic competitive Lotka-volterra system[J]. Appl Math Comput, 1998,90:155-166.
[6] Hua Hongxiao, Teng Zhidong, Gao Shujing. Extinction in nonautonomous Lotka-volterra competitive system with pure-delays and feedback controls[J]. Nonlinear Analysis, 2009,10:2508-2520.
[7] Hui Jing, Chen Lansun. Extinction and permanence of a predator-prey system with impulsive effect[J]. Mathematica Applicate, 2005,18(1):1-7.
[8] Bainov D D, Simeonov P S. System with impulsive effect: stability theory and applications[J]. Journal of Applied Mathematics and Mechanics, 1991,71(10):419.
[9] Laksmikantham V, Baivov D D,Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore: World Scientific, 1989:234-240.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2013-02-27
基金项目: 国家自然科学基金资助项目(11161049)
*通信作者: 何延生(1962—),男,副教授,研究方向为微分方程理论及应用.
更新日期/Last Update: 2013-06-30