LIU Zhaomeng,HAN Youpan.Quantitative statistical robustness of conditional value at risk with moment-based uncertainty set[J].Journal of Yanbian University,2024,(02):54-59.
基于矩信息的不确定集下CVaR的定量统计稳健性
- Title:
- Quantitative statistical robustness of conditional value at risk with moment-based uncertainty set
- 文章编号:
- 1004-4353(2024)02-0054-06
- Keywords:
- robust risk measure; uncertainty set; quantitative statistical robustness ; conditional value at risk
- 分类号:
- O221.5
- 文献标志码:
- A
- 摘要:
- 研究了在最坏情况下CVaR的定量统计稳健性.首先,推导出了CVaR关于随机向量是Lipschitz的;其次,证明了在Kantorovich度量下,分布不确定集在某一确定点附近是局部Lipschitz的,由此得出分布式鲁棒CVaR模型的最优值函数满足Lipschitz连续性;最后,在最坏情况下推导出了CVaR的定量统计稳健性.
- Abstract:
- The quantitative statistical robustness of conditional value at risk (CVaR) in the worst-case is studied. Firstly, CVaR is Lipschitz with random vectors. Secondly,the distribution uncertainty set is locally Lipschitz near a certain point under the Kantorovich metric,thereby the optimal value function of the distributed robust CVaR model satisfies Lipschitz continuity. Finally,the quantitative statistical robustness of the worst-case CVaR is derived.
参考文献/References:
[1] ROCKAFELLAR R T,URYASEV S. Optimization of conditional Value-At-Risk[J]. Journal of Risk,2000,2(3):21-42.
[2] HAMPEL F R. A general qualitative definition of robustness[J]. The Annals of Mathematical Statistics,1971,42(6):1887-1896.
[3] WANG W,XU H F,MA T J. Quantitative statistical robustness for tail-dependent law invariant risk measures[J]. Quantitative Finance,2021,21(10):1669-1685.
[4] HUANG D,ZHU S S,Fabozzi F J,et al. Portfolio selection with uncertain exit time:A robust CVaR approach[J]. Journal of Economic Dynamics and Control,2008,32(2):594-623.
[5] DELAGE E,YE Y Y. Distributionally robust optimization under moment uncertainty with application to data-driven problems[J]. Operations research,2010,58(3):595-612.
[6] GIBBS A L,SU F E. On choosing and bounding probability metrics[J]. International Statistical Review,2002,70(3):419-435.
[7] ZHANG J,XU H,ZHANG L W,Xu H F. Quantitative stability analysis for distributionally robust optimization with moment constraints[J]. SIAM Journal on Optimization,2016,26(3):1855-1882.
[8] GUO S Y,XU H F. Statistical robustness in utility preference robust optimization models[J]. Mathematical Programming,2021,190(1/2):679-720.
备注/Memo
投稿日期:2024-04-12
基金项目:国家自然科学基金(11501434);陕西省自然科学基金(2023-JC-YB-063)
第一作者:刘兆萌(1999—),女,硕士研究生,研究方向为金融优化和最优化理论.
通信作者:韩有攀(1980—),男,博士,副教授,研究方向为金融优化、集值优化和传统优化理论.