YUAN Mingyang,ZHANG Deyan.A class of Green-Osher inequality for planar star bodies[J].Journal of Yanbian University,2024,(01):87-91.
平面星体的一类Green-Osher不等式
- Title:
- A class of Green-Osher inequality for planar star bodies
- 文章编号:
- 1004-4353(2024)01-0087-05
- 关键词:
- 平面星体; 严格凸函数; Green-Osher不等式; 位似
- 分类号:
- O186.5
- 文献标志码:
- A
- 摘要:
- 基于文献[4]的研究,利用平面星体和对偶混合体积的性质证明了平面星体的一类Green-Osher不等式,并得到了该不等式等号成立的充要条件是两平面星体位似.
- Abstract:
- Based on the literature [4], a class of Green-Osher inequality for planar star bodies is proved by the properties of planar star bodies and pairwise mixed volumes. Moreover,the equality holds if and only if the two planar star bodies are homothetic.
参考文献/References:
[1] ZHANG D Y. A note on the isoperimetric deficit[J]. Journal of Mathematical Analysis and Applications,2019,478(1):14-32.
[2] GAGE,M E. An isoperimetric inequality with applications to curve shortening[J]. Duke Mathematical Journal. 1983, 50(4):1225-1229.
[3] 马磊,曾春娜. 平面上加强的Ros不等式[J]. 西南师范大学学报(自然科学版),2014,39(8):23-25.
[4] GREEN M,OSHER S. Steiner polynomials,Wulff flows,and some new isoperimetric inequalities for convex plane curves[J]. Asian Journal of Mathematics,1999,3:659-676.
[5] XI D M,LENG G S. Dar’s conjecture and the log-Brunn-Minkowski inequality[J]. Journal of Differential Geometry, 2016,103(1):145-189.
[6] YANG Y L. Nonsymmetric extension of the Green–Osher inequality[J]. Geometriae Dedicata,2019,203(1):155-161.
[7] LUTWAK E. Dual Mixed Volumes[J]. Pacific Journal of Mathematics,1975,58(2):531-538.
[8] 张德燕,马统一.关于对偶Steiner多项式的根的注记[J].纯粹数学与应用数学,2016,32(02):111-118.
[9] 刘春燕,马统一.星体的p-混合弦长积分[J].应用数学与计算数学学报,2013,27(02):239-245.
[10] 徐珂,仇恒方,梅静芳. 对偶的混合对称Chernoff型不等式及其稳定性[J].淮北师范大学学报(自然科学版), 2021,42(04):5-11.
[11] 张增乐.星体的Bonnesen-型不等式[J].数学物理学报,2021,41(05):1249-1262.
[11] SCHNEIDER R. Convex Bodies:The Brunn-Minkowski Theory[M]. London:Cambridge University Press,2013:20.
备注/Memo
投稿日期:2023-12-20
基金项目:安徽省高校自然科学研究重大项目(2022AH040067);淮北师范大学质量工程项目(2023jxyi001)第一作者:袁名扬(2000— ),男,硕士研究生,研究方向为凸几何分析.
通信作者:张德燕(1980— ),女,博士,副教授,研究方向为整体微分几何和凸几何分析.