LIN Zhixing,CHEN Meixiang,YANG Zhongpeng,et al.Study on solving the spectrum for two types of orthogonal matrices by matrix trace[J].Journal of Yanbian University,2023,(04):324-332.
利用矩阵迹求解两类正交矩阵谱的研究
- Title:
- Study on solving the spectrum for two types of orthogonal matrices by matrix trace
- 文章编号:
- 1004-4353(2023)04-0324-09
- Keywords:
- orthogonal matrix; real symmetric matrix; matrix trace; spectrum; necessary and sufficient condition; eigenvalue
- 分类号:
- O151.21
- 文献标志码:
- A
- 摘要:
- 应用正交矩阵的特征值与迹的关系,得到了判定平方对称正交矩阵和4次方幂对称正交矩阵的充要条件.基于此,给出了这两类正交矩阵的特征值及其重数的计算公式,并利用该公式计算了已有文献中的相关数值例子.计算结果表明,该算法可不用通过求解特征多项式来求解特征值,因此该方法比传统方法简单、方便.
- Abstract:
- The necessary and sufficient conditions for the judgement of two types of orthogonal matrices with square and quartic be symmetric were obtained by applying the relationship between the eigenvalues and traces of orthogonal matrices.Based on these, the calculation formulas for eigenvalues and multiplicities of these two types of orthogonal matrices were given, and be used to calculate relevant numerical examples of orthogonal matrices in the existing literatures.The results show that the algorithm is simple and convenient, as it avoids solving characteristic polynomials.The calculation results show that the algorithm can solve the eigenvalues without characteristic polynomials, thus the method is simpler and more convenient than the traditional.
参考文献/References:
[1] WOLKOWICZ H, STYAN G P H.Bounds for eigenvalues using trace [J].Linear Algebra and Its Application, 1980,29:471 - 506.
[2] LAY D C.Linear Algebra and Its Applications [M].5th.New Jersey: Pearson Education, Inc, 2019:281.
[3] WOLKOWICZ H, STYAN G P H.More bounds for eigenvalues using trace [J].Linear Algebra and Its Application, 1980,31:1 - 17.
[4] TARAZAGA P.Eigenvalue estimates for symmetric matrices [J].Linear Algebra and Its Application, 1990,135:171 - 179.
[5] MERIKOSKI J K, VIRTANEN A.Bounds for eigenvalues using the trace and determinant [J].Linear Algebra and Its Application, 1997,264:101 - 108.
[6] HORNE B G.Lower bounds for the spectral radius of a matrix [J].Linear Algebra and Its Application, 1997,263:261 - 273.
[7] 杨忠鹏,陈智雄.关于用矩阵的迹表示的特征值的界[J].福建师范大学学报(自然科学版),2002,18(4):7 - 10.
[8] 吕洪斌,杨忠鹏.关于用迹表示的实矩阵的特征值的虚部的界[J].吉林师范大学学报(自然科学版),2004,25(2):43 - 46.
[9] HUANG T Z, WANG L.Improving upper bounds for eigenvalues of complex matrices using traces [J].Linear Algebra and Its Applications, 2007,426:841 - 854.
[10] ZHONG Q, HUANG T Z.Bounds for the extreme eigenvalues using the trace and determinant [J].Journal of Information and Computing Science, 2008,3(2):118 - 124.
[11] KITTANEH F, LIN M.Trace inequalities for positive semidefinite block matrices [J].Linear Algebra and Its Applications, 2017,524:153 - 158.
[12] SMITH O K.Eigenvalues of a symmetric 3×3 matrix [J].Communications ACM, 1961,4(4):168.
[13] 陈梅香,杨忠鹏,晏瑜敏,等.迹为整数的3×3阶正交矩阵的谱[J].北华大学学报(自然科学版),2018,19(2):158 - 163.
[14] 陈梅香,杨忠鹏,李雨昕,等.3×3正交矩阵谱的确定及其应用[J].福建师范大学学报(自然科学版),2020,36(4):1 - 8.
[15] ZHANG F Z.Matrix Theory Basic Results and Techniques [M].2nd.New York: Springer, 2011:181.
[16] ZHANG F Z.Matrix Theory Basic Results and Techniques [M].New York: Springer, 1999:141.
[17] 林志兴,杨忠鹏,陈梅香,等.一类矩阵迹方程正交解的一些研究[J].延边大学学报(自然科学版),2020,46(2):115 - 121.
[18] GOODSON G R.The inverse - similarity problem for real orthogonal matrices [J].The American Mathematical Monthly, 1997,104(3):223 - 230.
[19] HORN R A, JOHNSON C R.Matrix Analysis [M].2nd.New York: Cambridge University Press, 2013:136.
[20] ZHANG S G, LIN H L.Algorithms for symmetric groups of simplexes [J].Applied Mathematics and Computation, 2007,188:1610 - 1634.
[21] 华罗庚.辛方阵的辛相似[J].中山大学学报(自然科学版),1962(4):1 - 12.
[22] N.B.普罗斯库烈柯夫.线性代数习题集[M].周晓钟,译.北京:人民教育出版社,1983:250.
[23] 张贤科,许甫华.高等代数学[M].2版.北京:清华大学出版社,2006:323 - 324.
[24] 法杰耶夫,索明斯基.高等代数习题集[M].丁寿田,译.北京: 高等教育出版社,1987:261.
[25] 张贤科.高等线性代数学[M].北京:高等教育出版社,2012:272.
[26] 李师正.高等代数解题方法与技巧[M].北京:高等教育出版社,2004:178.
[27] 李刚.高等代数解题方法与技巧[M].2版.北京:高等教育出版社,2022:140.
相似文献/References:
[1]高小明.拟正交矩阵的若干性质[J].延边大学学报(自然科学版),2017,43(04):311.
GAO Xiaoming.Some properties of the generalized orthogonal matrix[J].Journal of Yanbian University,2017,43(04):311.
备注/Memo
收稿日期: 2023-02-11
基金项目: 国家自然科学基金(61772292); 福建省自然科学基金(2023J01997,2021J011103); 莆田市科学技术局项目(2022SZ3001ptxy05)
第一作者: 林志兴(1973—),男,教授,研究方向为矩阵理论和多元统计.
通信作者: 杨忠鹏(1947—),男,教授,研究方向为矩阵理论.