[1]河燕梅,文香丹.具有高阶扰动的Oregonator模型的平稳分布研究[J].延边大学学报(自然科学版),2023,(04):310-316,357.
 HE Yanmei,WEN Xiangdan.Stationary distribution of an Oregonator model with high - order perturbation[J].Journal of Yanbian University,2023,(04):310-316,357.
点击复制

具有高阶扰动的Oregonator模型的平稳分布研究

参考文献/References:

[1] FIELD R J, NOYES R M.Oscillations in chemical systems.Ⅳ.Limit cycle behavior in a model of a real chemical reaction [J].Journal of Chemical Physics, 1974,60:1877 - 1884.
[2] FIELD R J, KOROS E, NOYES R M.Oscillations in chemical systems.II.Thorough analysis of temporal oscillations in the bromate - cerium - malonic acid system [J].Journal of the American Chemical Society, 1972,94(25):8649 - 8664.
[3] ZHABOTINSKII A M.Periodic processes of the oxidation of malonic acid in solution(Study of the kinetics of Belousov’s reaction)[J].Biofizika, 1964,9:306 - 311.
[4] TYSON J J.The Belousov - Zhabotinskii Reaction, volume 10 of Lect.Notes in Biomathematics [M].New York: Springer - Verlag, 1976.
[5] YANG Y, JIANG D Q, O’REGAN D, et al.Dynamics of the stochastic Belousov - Zhabotinskii chemical reaction model [J].Mathematics, 2020,8(5):663.
[6] ZHANG W W, MENG X Z, DONG Y L.Periodic solution and ergodic stationary distribution of stochastic SIRI epidemic systems with nonlinear perturbations [J].Journal of Systems Science and Complexity, 2019,32(4):1104 - 1124.
[7] HAN B T, JIANG D Q, HAYAT T, et al.Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second - order perturbation [J].Chaos Solitons and Fractals, 2020,140:110238.
[8] NGUYEN D H, YIN G.Coexistence and exclusion of stochastic competitive Lotka - Volterra models [J].Journal of Differential Equations, 2017,262(3):1192 - 1225.
[9] ZU L, JIANG D Q, O’REGAN D, et al.Ergodic property of a Lotka - Volterra predator - prey model with white noise higher order perturbation under regime switching [J].Applied Mathematics and Computation, 2018,330:93 - 102.
[10] LIU Q, JIANG D Q.Periodic solution and stationary distribution of stochastic predator - prey models with higher - order perturbation [J].Journal of Nonlinear Science, 2018,28(2):423 - 442.
[11] LIU Q, JIANG D Q.Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation [J].Applied Mathematics Letters, 2017,73:8 - 15.
[12] KHASMINSKII R.Stochastic stability of differential equations [M].New York: Springer, 1980.
[13] ZHU C, YIN G.Asymptotic properties of hybrid diffusion systems [J].SIAM Journal on Control and Optimization, 2007,46(4):1155 - 1179.
[14] HIGHAM D J.An algorithmic introduction to numerical simulation of stochastic differential equations [J].SIAM Review, 2001,43(3):525 - 546.

备注/Memo

收稿日期: 2023-06-08
基金项目: 吉林省教育厅科技研究项目(JJKH20180462KJ)
第一作者: 河燕梅(2001—),女,本科生,研究方向为随机微分方程和优化理论.
通信作者: 文香丹(1965—),女(朝鲜族),硕士,教授,研究方向为随机微分方程和优化理论.

更新日期/Last Update: 2023-12-30