HE Yanmei,WEN Xiangdan.Stationary distribution of an Oregonator model with high - order perturbation[J].Journal of Yanbian University,2023,(04):310-316,357.
具有高阶扰动的Oregonator模型的平稳分布研究
- Title:
- Stationary distribution of an Oregonator model with high - order perturbation
- 文章编号:
- 1004-4353(2023)04-0310-08
- 关键词:
- 高阶扰动; Oregonator模型; Lyapunov函数; 平稳分布
- 分类号:
- O211.63
- 文献标志码:
- A
- 摘要:
- 为了探究随机不确定因素对化学振荡反应动力学行为的影响,建立了一个具有高阶扰动的Oregonator模型,并通过构造合适的Lyapunov函数得到了系统存在遍历平稳分布的充分条件.数值模拟结果表明,小噪声能够促进系统反应的持续进行(即有利于促进系统的平稳分布),而大噪声则不利于系统反应的持续进行.
- Abstract:
- In order to investigate the effect of random uncertainties on the dynamical behavior of chemical oscillating reaction, an Oregonator model with higher - order perturbation was established.And by constructing a suitable Lyapunov function, the sufficient conditions for the existence of ergodic stationary distribution of the system were obtained.Numerical simulations were used to show that small noise can promote the continuous process of the reaction(that is, it was conducive to promoting the stationary distribution of the system), while large noise was not conducive to the continuous process of the reaction.
参考文献/References:
[1] FIELD R J, NOYES R M.Oscillations in chemical systems.Ⅳ.Limit cycle behavior in a model of a real chemical reaction [J].Journal of Chemical Physics, 1974,60:1877 - 1884.
[2] FIELD R J, KOROS E, NOYES R M.Oscillations in chemical systems.II.Thorough analysis of temporal oscillations in the bromate - cerium - malonic acid system [J].Journal of the American Chemical Society, 1972,94(25):8649 - 8664.
[3] ZHABOTINSKII A M.Periodic processes of the oxidation of malonic acid in solution(Study of the kinetics of Belousov’s reaction)[J].Biofizika, 1964,9:306 - 311.
[4] TYSON J J.The Belousov - Zhabotinskii Reaction, volume 10 of Lect.Notes in Biomathematics [M].New York: Springer - Verlag, 1976.
[5] YANG Y, JIANG D Q, O’REGAN D, et al.Dynamics of the stochastic Belousov - Zhabotinskii chemical reaction model [J].Mathematics, 2020,8(5):663.
[6] ZHANG W W, MENG X Z, DONG Y L.Periodic solution and ergodic stationary distribution of stochastic SIRI epidemic systems with nonlinear perturbations [J].Journal of Systems Science and Complexity, 2019,32(4):1104 - 1124.
[7] HAN B T, JIANG D Q, HAYAT T, et al.Stationary distribution and extinction of a stochastic staged progression AIDS model with staged treatment and second - order perturbation [J].Chaos Solitons and Fractals, 2020,140:110238.
[8] NGUYEN D H, YIN G.Coexistence and exclusion of stochastic competitive Lotka - Volterra models [J].Journal of Differential Equations, 2017,262(3):1192 - 1225.
[9] ZU L, JIANG D Q, O’REGAN D, et al.Ergodic property of a Lotka - Volterra predator - prey model with white noise higher order perturbation under regime switching [J].Applied Mathematics and Computation, 2018,330:93 - 102.
[10] LIU Q, JIANG D Q.Periodic solution and stationary distribution of stochastic predator - prey models with higher - order perturbation [J].Journal of Nonlinear Science, 2018,28(2):423 - 442.
[11] LIU Q, JIANG D Q.Stationary distribution and extinction of a stochastic SIR model with nonlinear perturbation [J].Applied Mathematics Letters, 2017,73:8 - 15.
[12] KHASMINSKII R.Stochastic stability of differential equations [M].New York: Springer, 1980.
[13] ZHU C, YIN G.Asymptotic properties of hybrid diffusion systems [J].SIAM Journal on Control and Optimization, 2007,46(4):1155 - 1179.
[14] HIGHAM D J.An algorithmic introduction to numerical simulation of stochastic differential equations [J].SIAM Review, 2001,43(3):525 - 546.
备注/Memo
收稿日期: 2023-06-08
基金项目: 吉林省教育厅科技研究项目(JJKH20180462KJ)
第一作者: 河燕梅(2001—),女,本科生,研究方向为随机微分方程和优化理论.
通信作者: 文香丹(1965—),女(朝鲜族),硕士,教授,研究方向为随机微分方程和优化理论.