[1]赵玉凤.一类具有饱和发生率的染病食饵- 捕食者随机模型的动力学分析[J].延边大学学报(自然科学版),2023,(04):298-307.
 ZHAO Yufeng.Dynamic analysis of a infected prey - predator stochastic model with saturation incidence[J].Journal of Yanbian University,2023,(04):298-307.
点击复制

一类具有饱和发生率的染病食饵- 捕食者随机模型的动力学分析

参考文献/References:

[1] 姜全德.时标上具有捕获率和投放率的Holling Ⅲ型捕食系统的周期解[J].云南大学学报(自然科学版),2021,43(5):841 - 842.
[2] 张子振,张伟诗.一类具有恐惧效应的Holling - Ⅲ类时滞捕食系统[J].江苏师范大学学报(自然科学版),2022,40(2):42 - 43.
[3] 赖尾英,张敬华.具有HollingⅢ功能性反应的捕食系统的全局稳定性[J].黑龙江大学自然科学学报,2021,38(3):283 - 285.
[4] MA J Y, REN H M.On the dynamics of a stochastic ratio - dependent predator - prey system with infection for the prey[J].Open Journal of Applied Sciences, 2021,11(4):440 - 457.
[5] XU C H, YU Y G, REN G J, et al.Extinction and permanence analysis of stochastic predator - prey model with disease, ratio - dependent type functional response and nonlinear incidence rate [J].Journal of Computational and Nonlinear Dynamics, 2021,16:1 - 15.
[6] YANG Q, ZHANG X H, JIANG D Q, et al.Analysis of a stochastic predator - prey model with weak Allee effect and Holling -(n+1)functional response [J].Communications in Nonlinear Science and Numerical Simulation, 2022,111:2 - 5.
[7] ZHANG X H, YANG Q.Dynamical behavior of a stochastic predator - prey model with general functional response and nonlinear jump - diffusion [J].Discrete and Continuous Dynamical Systems - B, 2022,27(6):3155 - 3175.
[8] YANG J T.Persistence and periodic measure of a stochastic predator - prey model with Beddington - DeAngelis functional response [J].International Journal of Biomathematics, 2023,16(6):1 - 3.
[9] HAN B T, JIANG D Q, ZHOU B Q, et al.Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth [J].Chaos Solitons & Fractals, 2020,142(5):1 - 5.
[10] KHASMINKII R.Stochastic Stability of Differential Equations [M].Berlin: Springer, 2012.
[11] LIU M, WANG K.Survival analysis of a stochastic cooperation system in a polluted environment [J].Journal of Biological Systems, 2011,19(2):183 - 204.定义微分算子L= /(t)+∑di=1fi(X,t)/(Xi)+1/2∑di,j=1[gT(X,t)g(X,t)]ij·(2)/(XiXi).

备注/Memo

收稿日期: 2023-06-16
基金项目: 山西省高等学校科技创新计划项目(2022L645); 山西省高等学校教学改革创新项目(J20221313); 山西省教育科学“十四五”规划课题(GH-220495)
作者简介: 赵玉凤(1985—),女,硕士,讲师,研究方向为生物数学.

更新日期/Last Update: 2023-12-30