[1]王檄豪,韦煜明.一类具有恐惧效应的时滞广义Holling Ⅲ型捕食者- 食饵模型的动力学分析[J].延边大学学报(自然科学版),2023,(04):288-297.
 WANG Xihao,WEI Yuming.Dynamic analysis of a delayed predator - prey model with fear effect and generalized Holling type Ⅲ functional response[J].Journal of Yanbian University,2023,(04):288-297.
点击复制

一类具有恐惧效应的时滞广义Holling Ⅲ型捕食者- 食饵模型的动力学分析

参考文献/References:

[1] ZANETTE L Y, WHITE A F, ALLEN M C.Perceived predation risk reduces the number of offspring songbirds produce per year [J].Science, 2011,334(6061):1398 - 1401.
[2] WANG X Y, ZANETTE L, ZOU X F.Modelling the fear effect in predator - prey interactions [J].Journal of Mathematical Biology, 2016,73(5):1179 - 1204.
[3] 李梁晨,徐瑞.一类具有时滞和Holling Ⅱ型功能反应的捕食模型的全局稳定性和分支(英文)[J].黑龙江大学自然科学学报,2016,33(3):328 - 337.
[4] 秦爽.具有广义Holling Ⅲ型功能性反应的共位群内捕食系统的动力学行为[D].哈尔滨:黑龙江大学,2016.
[5] SHAO Y F.Global stability of a delayed predator - prey system with fear and Holling - type Ⅱ functional response in deterministic and stochastic environments [J].Mathematics and Computers in Simulation, 2022,200:65 - 77.
[6] 刘英姿,李忠,何梦昕.具有恐惧效应和食饵避难所的Leslie - Gower捕食者- 食饵模型的动力学分析[J].延边大学学报(自然科学版),2022,48(2):112 - 117.
[7] LIU Q, ZU L, JIANG D Q.Dynamics of stochastic predator - prey models with Holling Ⅱ functional response [J].Communications in Nonlinear Science and Numerical Simulation, 2016,37:62 - 76.
[8] PATI N C, GHOSH B.Delayed carrying capacity induced subcritical and supercritical Hopf bifurcations in a predator - prey system [J].Mathematics and Computers in Simulation, 2022,195:171 - 196.
[9] 方侃,曾怀杰,陈晓英.具有捕食者Allee效应的Leslie - Gower模型的动力学分析[J].延边大学学报(自然科学版),2022,48(1):25 - 29.
[10] MONDAL S, SAMANTA G, de la SEN M.A comparison study of predator - prey model in deterministic and stochastic environments with the impacts of fear and habitat complexity [J].Bulletin of Mathematical Biology, 2022,84(10):115.
[11] FREEDMAN H I, RAO V S H.The trade - off between mutual interference and time lags in predator - prey systems [J].Bulletin of Mathematical Biology, 1983,45(6):991 - 1004.
[12] JIANG D Q, SHI N Z.A note on nonautonomous logistic equation with random perturbation [J].Journal of Mathematical Analysis and Applications, 2005,303(1):164 - 172.
[13] 钟颖,韦煜明.污染环境下具有混合功能反应和Markov切换的食饵- 捕食模型[J].广西师范大学学报(自然科学版),2023,41(4):135 - 148.
[14] ZHAO S N, YUAN S L, WANG H.Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation [J].Journal of Differential Equations, 2020,268(9):5113 - 5139.
[15] MAO X R.Stochastic Differential Equations and Applications [M].Amsterdam: Elsevier, 2007.
[16] WANG S, HU G X, WEI T D, et al.Stability in distribution of a stochastic predator - prey system with s - type distributed time delays [J].Physica A: Statistical Mechanics and Its Applications, 2018,505:919 - 930.
[17] QI H K, MENG X Z.Threshold behavior of a stochastic predator - prey system with prey refuge and fear effect [J].Applied Mathematics Letter, 2021,113:106846.
[18] DA PRATO G, ZABCZYK J.Ergodicity for Infinite Dimensional Systems [M].Cambridge: Cambridge University Press, 1996:229.
[19] HIGHAM D J.An algorithmic introduction to numerical simulation of stochastic differential equations [J].SIAM Review, 2001,43:525 - 546.
[20] ZHANG Y K, MENG X Z.Dynamic study of a stochastic Holling Ⅲ predator - prey system with a prey refuge [J].IFAC - PapersOnLine, 2022,55(3):73 - 78.

相似文献/References:

[1]刘英姿,李忠,何梦昕.具有恐惧效应和食饵避难所的Leslie - Gower捕食者-食饵模型的动力学分析[J].延边大学学报(自然科学版),2022,(02):112.
 LIU Yingzi,LI Zhong,HE Mengxin.Dynamics analysis of a Leslie - Gower type predator - prey model with fear effect and prey refuge[J].Journal of Yanbian University,2022,(04):112.
[2]王逸勤,施春玲.具有常数避难所和恐惧效应的HollingⅡ类功能性反应捕食食饵系统的定性分析[J].延边大学学报(自然科学版),2023,(02):116.
 WANG Yiqin,SHI Chunling.Qualitative analysis of a predator-prey system with Holling type Ⅱ functional response incorporating fear effct and a constant prey refuge[J].Journal of Yanbian University,2023,(04):116.

备注/Memo

收稿日期: 2023-05-21
基金项目: 国家自然科学基金(11961074)
第一作者: 王檄豪(1998—),男,硕士研究生,研究方向为生物数学.
通信作者: 韦煜明(1974—),男,博士,教授,研究方向为生物数学.

更新日期/Last Update: 2023-12-30