LIANG Qinghai,ZHANG Deyan.Curvature integral inequalities for several classes of two mixed asymmetric convex bodies[J].Journal of Yanbian University,2023,(03):244-249.
几类两混合非对称凸体的相对曲率积分不等式
- Title:
- Curvature integral inequalities for several classes of two mixed asymmetric convex bodies
- 文章编号:
- 1004-4353(2023)03-0244-06
- 关键词:
- 严格凸体; 凸函数; Green - Osher不等式; 相对曲率; 膨胀
- Keywords:
- strictly convex body; convex function; Green - Osher inequality; relative curvature; dilation
- 分类号:
- O186.5
- 文献标志码:
- A
- 摘要:
- 将6种不同的凸函数与非对称的Green - Osher不等式相结合,得到了两个凸体处于膨胀位置时的相对曲率积分型不等式,该结果推广了文献[5]中关于闭凸曲线型积分不等式的相关结果.
- Abstract:
- By combining six different convex functions with the asymmetric Green - Osher inequality, the integral inequality of relative curvature when two convex bodies are in the position of expansion is obtained, and the result generalizes the integral inequality of closed convex curves in literature [5].
参考文献/References:
[1] GREEN M, OSHER S.Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves [J].Asian Journal of Mathematics, 1999,3(3):659 - 676.
[2] XI D M, LENG G S.Dar’s conjecture and the log - Brunn - Minkowski inequality [J].Journal of Differential Geometry, 2016,103(1):145 - 189.
[3] YANG Y L.Nonsymmetric extension of the Green - Osher inequality [J].Geometriae Dedicata, 2019,203(1):155 - 161.
[4] ZENG C N, DONG X, WANG Y, et al.The log - Minkowski inequality of curvature entropy for non - symmetric convex bodies [J].arXiv preprint arXiv: 2211.14484, 2022.
[5] 张泽源,赵会文.几类闭凸曲线的曲率积分不等式[J].Pure Mathematics, 2023,13(4):1056 - 1061.
[6] SCHNEIDER R.Convex bodies: the Brunn - Minkowski theory [M].London: Cambridge University Press, 2014.
[7] B?R?CZKY K J, LUTWAK E, YANG D, et al.The dual Minkowski problem for symmetric convex bodies [J].Advances in Mathematics, 2019,356:106805.
[8] GREGOR W, KOLDOBSKY A.Inequalities for the derivatives of the Radon transform on convex bodies [J].Israel Journal of Mathematics, 2021,246(1):261 - 280.
[9] HENK M, CIFRE M A H.Notes on the roots of Steiner polynomials [J].Revista Matemática Iberoamericana, 2008,24(2):631 - 644.
[10] JETTER M.Bounds on the roots of the Steiner polynomial [J].Adv Geom, 2011,11(2):313 - 317.
[11] 董旭,王亚玲,周玉奇,等.两混合凸体的相对曲率积分不等式[J/OL].数学学报(中文版):1 - 12 [2023-03-09].http://42.194.184.28/kcms/detail/11.2038.o1.20230509.0907.002.html.
[12] HU J Q, XIONG G.A new affine invariant geometric functional for polytopes and its associated affine isoperimetric inequalities [J].International Mathematics Research Notices, 2019,2021(12):8977 - 8995.
备注/Memo
收稿日期: 2023-06-14
基金项目: 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2020022)
第一作者: 梁清海(1998—),男(布依族),硕士研究生,研究方向为凸体几何.
通信作者: 张德燕(1980—),女,博士,副教授,研究方向为微分几何与凸体几何.