[1]连博勇.一类Bézier型Szász - Mirakjan - Kantorovich算子的逼近性质[J].延边大学学报(自然科学版),2023,(03):209-211.
 LIAN Boyong.Approximation property of a class of Szász - Mirakjan - Kantorovich operators of Bézier type[J].Journal of Yanbian University,2023,(03):209-211.
点击复制

一类Bézier型Szász - Mirakjan - Kantorovich算子的逼近性质

参考文献/References:

[1] HERZOG M.Semi - exponential operators [J].Symmetry, 2021,13(4):637.
[2] HERZOG M.Some remarks about exponential and semi - exponential operators [J].Symmetry, 2021,13(12):2266.
[3] ZENG X M.On the rate of convergence of the Generalized Szász type operators for functions of boundedvariation [J].J Math Anal Appl, 1998,226:309 - 325.
[4] DUMAN O, ?ZARSLAN M A.Szász - Mirakjan type operators providing a better error estimation [J].Appl Math Lett, 2007,20:1184 - 1188.
[5] 连博勇.修正的Szász - Mirakjan 算子的逼近性质[J].延边大学学报(自然科学版),2012,38(4):279 - 281.
[6] AGRAWAL G, GUPTA V.Approximation properties of semi - exponential Szász - Mirakyan - Kantorovich operators [J].Filomat, 2023,37(4):1097 - 1109.
[7] AGRAWAL P N, ISPIR N, KAJLA A.Approximation properties of Bézie - summation - integral type operators based on Polya - Bernstein function [J].Appl Math Comput, 2015,259:533 - 539.
[8] LIAN B Y, CAI Q B.On the rate of convergence of two generalized Bernstein type operators [J].Appl Math J Chinese Univ, 2020,35(3):321 - 331.
[9] KAJLA A, ?ZGER F, YADAV J.Bézier - Baskakov - Beta type operators [J].Filomat, 2022,36(19):6735 - 6750.
[10] DEVORE R A, LORENTZ G G.Construtive Approximation [M].Berlin: Springer - Verlag, 1993.

备注/Memo

收稿日期: 2023-07-18
作者简介: 连博勇(1982—),男,硕士,教授,研究方向为函数逼近论.

更新日期/Last Update: 2023-09-20