LIAN Boyong.Approximation property of a class of Szász - Mirakjan - Kantorovich operators of Bézier type[J].Journal of Yanbian University,2023,(03):209-211.
一类Bézier型Szász - Mirakjan - Kantorovich算子的逼近性质
- Title:
- Approximation property of a class of Szász - Mirakjan - Kantorovich operators of Bézier type
- 文章编号:
- 1004-4353(2023)03-0209-03
- Keywords:
- Szász - Mirakjan - Kantorovich operators; modulus of continuity; K - funtional; Lipschitz function; approximation property
- 分类号:
- O174.41
- 文献标志码:
- A
- 摘要:
- 研究了一类Bézier型Szász - Mirakjan - Kantorovich算子.首先,给出了该类算子的一阶、二阶中心矩; 然后,利用Lipschitz型不等式得到了该类算子的范数不等式,并利用二阶连续模和K泛函讨论了该算子的逼近性质; 最后,给出了该类算子对Lipschitz函数类的逼近定理.
- Abstract:
- A class of Szász - Mirakjan - Kantorovich operators of Bézier type was introduced.Firstly, the first and second order central moment of the operators were given.Then, the norm inequality of the operators was obtained using Lipschitz type inequality.Thirdly, the approximation properties of this type of operators were discussed using second - order modulus of continuity and K - functional.Finally, the approximation theorem of this type of operators for the Lipschitz function class was given.
参考文献/References:
[1] HERZOG M.Semi - exponential operators [J].Symmetry, 2021,13(4):637.
[2] HERZOG M.Some remarks about exponential and semi - exponential operators [J].Symmetry, 2021,13(12):2266.
[3] ZENG X M.On the rate of convergence of the Generalized Szász type operators for functions of boundedvariation [J].J Math Anal Appl, 1998,226:309 - 325.
[4] DUMAN O, ?ZARSLAN M A.Szász - Mirakjan type operators providing a better error estimation [J].Appl Math Lett, 2007,20:1184 - 1188.
[5] 连博勇.修正的Szász - Mirakjan 算子的逼近性质[J].延边大学学报(自然科学版),2012,38(4):279 - 281.
[6] AGRAWAL G, GUPTA V.Approximation properties of semi - exponential Szász - Mirakyan - Kantorovich operators [J].Filomat, 2023,37(4):1097 - 1109.
[7] AGRAWAL P N, ISPIR N, KAJLA A.Approximation properties of Bézie - summation - integral type operators based on Polya - Bernstein function [J].Appl Math Comput, 2015,259:533 - 539.
[8] LIAN B Y, CAI Q B.On the rate of convergence of two generalized Bernstein type operators [J].Appl Math J Chinese Univ, 2020,35(3):321 - 331.
[9] KAJLA A, ?ZGER F, YADAV J.Bézier - Baskakov - Beta type operators [J].Filomat, 2022,36(19):6735 - 6750.
[10] DEVORE R A, LORENTZ G G.Construtive Approximation [M].Berlin: Springer - Verlag, 1993.
备注/Memo
收稿日期: 2023-07-18
作者简介: 连博勇(1982—),男,硕士,教授,研究方向为函数逼近论.